

Report on Detailed Site (Contamination) Investigation

Proposed Residential Development Kamira Court, Villawood

Prepared for New South Wales Land and Housing Corporation

> Project 86819.01 March 2020

Douglas Partners Geotechnics | Environment | Groundwater

Document History

Document details

Project No.	86819.01	Document No.	R.001.Rev1
Document title	Report on Detailed Site (Contamination) Investigation		Investigation
	Proposed Residential Development		
Site address	Kamira Court, Villawood		
Report prepared for	New South Wales Land and Housing Corporation		
File name	86819.01.R.001.Rev1 DSI		

Document status and review

Status	Prepared by	Reviewed by	Date issued
Revision 0	Joel James-Hall	Paul Gorman	21 February 2020
Revision 1	Joel James-Hall	Paul Gorman	3 March 2020

Distribution of copies

Status	Electronic	Paper	Issued to
Revision 0	1	0	Barry Evans, New South Wales Land and Housing Corporation
Revision 1	1	0	Jeff Tucker, New South Wales Land and Housing Corporation

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

	Signature	Date
Author	C B B M	3 March 2020
Reviewer	pp. H	3 March 2020
	10	

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 PO Box 472 West Ryde NSW 1685 Phone (02) 9809 0666

Table of Contents

Page

1.	Introduction1		
2.	Scop	e of Work	1
3.	Site Identification		
4.	Previ	ous Reports	3
	4.1	Preliminary Geotechnical and Contamination Assessment (DP 2008)	3
	4.2	In-situ Waste Classification (DP 2010)	3
	4.3	Preliminary Site (Contamination) Investigation (DP 2019)	3
5.	Conc	eptual Site Model	4
	5.1	Potential Contamination Sources and Contaminants of Concern	4
	5.2	Potential Receptors	
		5.2.1 Human Health Receptors	
		5.2.2 Environmental Receptors5.2.3 Potential Pathways	
	5.3	Summary of Preliminary CSM	
6.		work, Analysis and QA / QC	
0.	6.1	Sample Location and Rationale	
	6.2	Soil Sampling Procedure	
	0.2	6.2.1 General Sampling Procedure	
	6.3	Groundwater Sampling Procedure	
	6.4	Analytical Rationale	9
	6.5	Quality Assurance and Quality Control (QA / QC)	9
	6.6	Data Quality Indicators	9
7.	Site A	Assessment Criteria	10
8.	Field	Work Results	10
	8.1	Observations	10
	8.2	Soil	.11
	8.3	Groundwater	.11
9.	Labo	ratory Testing	.12
	9.1	Soil	.12
	9.2	Preliminary Waste Classification	.12
		9.2.1 Conditions	.14
	9.3	Limited ENM Assessment	
		9.3.1 Assessment Criteria	.14

		9.3.2	Assessment Procedure	15
	9.4	Ground	dwater	16
10.	Conclusion17		17	
11.	References18		18	
12.	Limitations1		19	

Appendix A:	About This Report, Drawings
Appendix B:	Site Photographs
Appendix C:	Quality Assurance and Quality Control
Appendix D:	Site Assessment Criteria
Appendix E:	Test Logs
Appendix F:	Groundwater Field Sheets
Appendix G:	Summary Laboratory Results
Appendix H:	Laboratory Documentation

Report on Detailed Site (Contamination) Investigation Proposed Residential Development Kamira Court, Villawood

1. Introduction

This report presents the results of a Detailed Site (Contamination) Investigation (DSI) undertaken for a proposed residential development at Kamira Avenue and Villawood Road, Villawood (the site, as shown in Drawing 1, Appendix A). The investigation was commissioned in an email dated 18 November 2019 by Theresa Knowles of the New South Wales Land and Housing Corporation and was undertaken in accordance with Douglas Partners' (DP) proposal SYD191077 dated 14 October 2019.

It is understood that the proposed development involves the construction of three multi-storey residential buildings with public open spaces in between the buildings. Basement level car-parking is anticipated in the future planned development at the site.

A Preliminary Site Investigation (PSI) (DP 2019) was previously completed at the site which included a limited intrusive investigation and a review of previous investigations. The PSI concluded that there was a low likelihood of significant contamination risks to human health or the environment at the site. However, the PSI did not include a groundwater investigation, and parts of the current site, including soils beneath Kamira Court, were not included in the investigation.

The objective of this DSI is to characterise the nature and extent of soil and groundwater contamination at the site including data gaps identified in the PSI, assess the suitability of the site for the current and proposed land use and, if deemed necessary, make recommendations for further targeted investigations and / or remediation to render the site suitable for the proposed land use.

2. Scope of Work

The full scope of work comprised the following:

- Review of the previous site investigation reports prepared by Douglas Partners Pty Ltd (DP) which included intrusive soil sampling;
- Excavation of two test pits using an excavator within part of Lot 31 D.P. 36718 (not previously sampled);
- Drilling of six boreholes using a truck mounted drilling rig, three of which were within Kamira Court and three around the perimeter of the site, which were subsequently converted into groundwater monitoring wells;
- Collection of soil samples from the above test locations at regular intervals or upon signs of contamination, extending approximately 0.5 m into natural soils to complement the previous soil investigations conducted at the site;

- Excavation of an additional two test pits using an excavator down to natural soils or limit of excavator reach generating temporary stockpiles of excavated material for the purposes of limited excavated natural material (ENM) testing;
- Separation of bulk material, including larger anthropogenic materials from the generated stockpiles using a sieve bucket attached to an excavator;
- Collection of composite and discrete samples from resulting sieved stockpiles;
- Photographing and recording fill composition at all test locations;
- Screening of all soil samples collected with a photo-ionisation detector (PID) to assess the likely presence or absence of volatile organic compounds (VOC);
- Collection of three groundwater samples from the installed monitoring wells;
- Dispatch of selected soil and groundwater samples (plus 10% QA / QC samples) for analysis by a NATA accredited laboratory for a range of common contaminants and parameters including, metals, polycyclic aromatic hydrocarbons (PAH), total recoverable hydrocarbons (TRH), benzene, toluene, ethylbenzene and xylene (BTEX), phenols, organochlorine pesticides (OCP), organophosphorus pesticides (OPP), polychlorinated biphenyls (PCB), electrical conductivity (EC), pH and asbestos;
- Field sampling and laboratory analysis in compliance with standard environmental protocols, including a Quality Assurance / Quality Control (QA / QC) plan consisting of 10 % replicate sampling, trip spikes, trip blanks, appropriate Chain of Custody procedures and in-house laboratory QA / QC testing; and
- Preparation of this report.

It is noted that the limited ENM assessment and sieving of fill was undertaken to assess the potential for the existing fill to be amenable to those forms of management.

3. Site Identification

The site comprises Lots 37 and 39 in Deposited Plan 202006, Lot 136 in Deposited Plan 16186, and Lots 381 and 382 in Deposited Plan 1232437 and has frontages to both Kamira Avenue and Villawood Road, Villawood. The site is an irregular shape and covers an area of approximately 2.1 ha. Fairfield City Council is the local government authority.

The local topography is relatively flat with the ground surface gently sloping upwards from the southwest to the north-east. The ground surface levels ranging from about RL 22 m and RL 26 m relative to Australian Height Datum (AHD).

The site location is shown on Drawing 1, Appendix A.

4. **Previous Reports**

4.1 Preliminary Geotechnical and Contamination Assessment (DP 2008)

DP (2019) included a detailed review of the previous Phase 1 contamination assessment (DP 2008). In summary, DP (2008) included a site walkover, a review of available desktop information and a limited intrusive sampling investigation comprises eight test pits (TP1 to TP8, Drawing 1, Appendix A). Only minor exceedances of the provisional phytotoxicity base investigation levels were detected. The report recommended further assessment during any earthworks specifically for potential asbestos contamination, in addition to the development of a Remediation Action Plan (RAP) and an Asbestos Management Plan (AMP).

4.2 In-situ Waste Classification (DP 2010)

DP (2019) included a detailed review of the previous *in-situ* waste classification (DP, 2010), which comprised 17 additional test pits (TP1 to TP17, Drawing 1, Appendix A). The assessment indicated that the filling on site consisted of reworked natural clay with inclusions of rootlets and shale fragments with trace inclusions of anthropogenic materials including gravels, metal, concrete, brick, glass, timber, paint, tile and plastics. No Asbestos Containing Materials (ACM) were detected.

4.3 Preliminary Site (Contamination) Investigation (DP 2019)

DP (2019) comprised a review of previous investigations in addition to an updated review of readily available site history information and a limited intrusive investigation comprising seven additional test pits (TP101 to TP107, Drawing 1, Appendix A). The available site history information indicated that the site was previously vacant land before significant residential development by 1961 as a part of housing commission accommodation, with these structures later being demolished by 2009. A previous historic dry-cleaning business was identified operating between 1965-1982 approximately 43 m south-east of the site.

Fill was encountered to depths of up to 4-5 m below ground level (bgl), consisting of silty clay soils with trace amounts of anthropogenic materials including metal, brick plastic, bone, concrete, wire, tile and terracotta.

The concentrations of the selected analytes in all samples analysed were found to be within the site assessment criteria and / or below the laboratory practical quantification limit. No potential ACM was identified during fieldwork or by laboratory analysis. The investigation considered a low likelihood of significant contamination risk and recommended the development of an unexpected finds protocol for any excavation / development works. Further investigations were recommended within areas of the site not assessed including soils beneath the Kamira Court road surface in addition to a groundwater investigation to guide any de-watering management during the proposed development.

Other data gaps identified subsequent to preparation of the DP (2019) report comprised:

- The south western part of Lot 31 in DP36718 was added to the site area, and was therefore, not previously sampled; and
- Given the previous dry-cleaning operations to the east of the site, it was considered prudent to assess groundwater conditions at the eastern boundary of the site.

5. Conceptual Site Model

A Conceptual Site Model (CSM) is a representation of site-related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. The CSM provides the framework for identifying how the site became contaminated and how potential receptors may be exposed to contamination either in the present of in the future i.e., it enables an assessment of the potential source - pathway - receptor linkages (complete pathways).

5.1 Potential Contamination Sources and Contaminants of Concern

Based on the previous investigations, the following potential sources of contamination and associated contaminants of concern have been identified.

Р	otential Source	Description of Potential Contaminating Activity	Contaminants of Potential Concern
S1 - Demolition and deterioration of previous site structures		Impact on soils due to demolition and removal of former structures and / or deterioration of structures prior to demolition.	Asbestos, metals, PCB, and / or other hazardous building materials.
S	S2 - Imported fill	Use of uncontrolled fill (and / or topsoil) for landscaped areas or site levelling.	Asbestos, heavy metals, TRH, VOC, BTEX, PAH, OCP, OPP, PCB and phenols.
S3 - Moderate to high risk activities surrounding the site		Historical records indicate the presence of licensed activities (including a dry cleaner) nearby the site.	Metals, TRH, BTEX, PAH, Phenols, VOC.
Notes :	BTEX benzen	coverable hydrocarbons e, toluene, ethylbenzene, xylene lic aromatic hydrocarbons	
	505		

Table 1: Potential Contamination Sources and Contaminants of Potential Concern (COPC)

- PCB polychlorinated biphenyls
- OCP organochlorine pesticides
- OPP organophosphorus pesticides
- VOC volatile organic compounds

It is noted, however, that previous investigations have not identified the presence of the COPC at concentrations above the adopted site assessment criteria.

5.2 Potential Receptors

5.2.1 Human Health Receptors

- R1 End users (commercial and residential, including visitors);
- R2 Construction and maintenance workers; and
- R3 Adjacent site users (residential and commercial).

5.2.2 Environmental Receptors

- R4 Groundwater; and
- R5 Terrestrial ecology.

5.2.3 Potential Pathways

Potential pathways for the identified contamination to impact on the receptors include the following:

- P1 Ingestion and dermal contact;
- P2 Inhalation of dust and / or vapour;
- P3 Leaching of contaminants and vertical migration into groundwater; and
- P4 Contact with terrestrial ecology.

5.3 Summary of Preliminary CSM

A 'source - pathway - receptor' approach has been used to assess the potential risks of harm being caused to human, water or environmental receptors from contamination sources on or in the vicinity of the site, via exposure pathways. The possible pathways between the above sources (S1 and S3) and receptors (R1 to R4) are provided in Table 2 below.

Table 2:Summary of Potential Complete Pathways

Potential Source and Contaminants of Concern	Pathway	Receptor	Action Recommended
S1 - Demolition / deterioration of previous or current site structures	P1 - Ingestion and dermal contact	R1 - End users R2 - Construction and maintenance workers	Assessment of near surface soils for remnant contaminants. This was largely completed through the previous
	P2 - Inhalation of dust and/or vapours	R1 - End users R2 - Construction and maintenance workers R3 - Adjacent site users	investigations. Additional sampling and testing of such soils in areas previously not sampled.
S2 - Imported fill	P1 - Ingestion and dermal contact	R1 - End users R2 - Construction and maintenance workers	An intrusive investigation is recommended to assess possible contamination including chemical testing of the
	P2 - Inhalation of dust and / or vapours	R1 - End users R2 - Construction and maintenance workers R3 - Adjacent site users	soils. This was largely completed through the previous investigations. Additional sampling and testing of such soils in areas previously not
	P3 - Leaching and vertical migration into groundwater	R4 - Groundwater	sampled. An assessment of groundwater quality to assess actual impacts to
	P4 - Contact with terrestrial ecology	R5 - Terrestrial ecology	groundwater.
S3 - Moderate to high risk activities surrounding the site	 P1 - Ingestion and dermal contact P2 - Inhalation of vapours P3 - Leaching and vertical migration into groundwater 	R1 - End users R2 - Construction and maintenance workers R3 - Adjacent site users R4 - Groundwater	An assessment of groundwater quality to assess actual impacts. Source determination may be needed as a second stage of investigation.

6. Fieldwork, Analysis and QA / QC

6.1 Sample Location and Rationale

The site covers an area of approximately 2.1 ha. According to the NSW EPA publication, *Sampling Design Guidelines* (1995), a minimum of thirty-one (31) systematic sampling points are recommended to characterise a site of this size. This recommendation was satisfied through the previous investigations, with a total of 32 sampling locations. The additional intrusive sampling completed as part of the DSI were specifically targeted to identified data gaps, as follows:

- Two test pits (TP9 and TP10) were positioned in the south western part of Lot 31, D.P.36718, not previous sampled;
- Three boreholes (BH1 to BH3) were positioned within the footprint of Kamira Court, which was not previously sampled;
- Three additional bores (MW1 to MW3) were positioned around the perimeter of the site to be converted into groundwater monitoring bores in order to assess groundwater quality across the site, focusing on the south eastern side to assess any potential contamination from the historic dry-cleaning business to the south east, with a well to the west to allow triangulation for determining the groundwater flow direction; and
- Two test pits (TPA and TPB) were excavated in filled area to permit a preliminary assessment of fill against ENM criteria.

Test locations were excavated 0.5 m into natural soils, prior refusal or to the limit of excavation (nominal depth of 4 m) in the case of the test pits. Boreholes MW1 to MW3 were extended further until encountering groundwater, or to a nominal depth of approximately 10 m bgl. Soil samples were collected from all test locations (with the exception of TPA and TPB), at regular intervals or upon signs of contamination. Selected soil samples were analysed for the chemicals of concern listed in Section 5 and DP (2019). Samples were selected based on site observations (odour, composition etc.), and their location within the subsoil strata (*i.e.,* fill or natural).

Test pits TPA and TPB were excavated to generate stockpiles of fill material for the purposes of a limited ENM assessment. TPA and TPB were positioned to investigate areas where deeper fill was previously encountered. Stockpiled soils were bulk screened on-site using a sieve bucket attached to an excavator prior to the collection of discrete, composite and bulk samples from the screened stockpiles.

Prior to commencing sampling, all test locations were cleared for underground services by a services locator.

Current and previous test locations are shown on Drawing 1, Appendix A.

6.2 Soil Sampling Procedure

6.2.1 General Sampling Procedure

Environmental sampling was performed with reference to current industry standards. All sampling data was recorded on DP chain of custody sheets. The general sampling and sample management procedures comprised:

- Collection of samples into laboratory-prepared glass jars with Teflon lined lids, capping immediately to minimise headspace within the sample jar;
- Collection of replicate samples in zip-lock bags for PID screening;
- New disposable nitrile gloves were worn by the field scientist / engineer for each sample collected thereby precluding potential cross-contamination;
- Collection of 10% replicate samples for QC purposes;
- Labelling of sample containers with individual and unique identification details, including project number, sample location and sample depth (where applicable); and
- Placement of the sample jars into a cooled, insulated and sealed container for transport to the laboratory.

6.3 Groundwater Sampling Procedure

Prior to development and sampling, the water level and presence of phase separated hydrocarbons was measured in the monitoring well using an interface meter.

Field parameters [pH, temperature, dissolved oxygen (DO), conductivity, turbidity and redox] were measured with a calibrated water quality meter, where there was sufficient well volume. Field data was recorded on field sheets. Once equilibrium was achieved groundwater was sampled using a low flow pump (where possible) from a depth close to the top of the observed water column.

Groundwater samples were collected in laboratory prepared bottles and vials. Samples collected for metals analysis were filtered in the field using a 0.45 µm filter.

A groundwater replicate sample was collected by decanting equal portions of groundwater into separately and uniquely labelled groundwater bottles. Sample bottles were filled directly from the pump outlet to minimise disturbance.

Each water sample container had an individual and unique identification, including project number, sample location and sample depth. The containers were then be placed into an ice cooled, insulated and sealed container for transport to the laboratory (with chain-of-custody).

Where reusable sampling equipment was used, sampling equipment was decontaminated between use. The decontamination procedure involved a three-stage wash. The equipment was first rinsed with tap water to remove sediment followed by a 3% Decon 90 solution. Finally, the equipment was rinsed in demineralised water.

The analysis of QA / QC samples included one trip spike and trip blank (analysed for BTEX).

Samples were sent to Envirolab Services Pty Ltd, a NATA accredited laboratory, for analysis.

6.4 Analytical Rationale

The analytical scheme for soil samples was designed to obtain an indication of the potential presence and possible distribution of identified contaminants of potential concern identified by the CSM, being metals, TRH, BTEX, PAH, OCP, OPP, PCB, VOC, phenols and asbestos. The results of the analytical testing were compared with the adopted site assessment criteria (SAC) discussed in Section 7.

6.5 Quality Assurance and Quality Control (QA / QC)

This DSI has been devised in general accordance with the seven-step data quality objective (DQO) process which is provided in Appendix B, Schedule B2 of NEPC (2013). The DQO process is outlined as follows:

- State the problem;
- Identify the decision;
- Identify inputs into the decision;
- Define the boundary of the assessment;
- Develop a decision rule;
- Specify acceptable limits on decision errors; and
- Optimise the design for obtaining data.

The DQOs adopted for this investigation are provided in Appendix C.

6.6 Data Quality Indicators

The performance of the assessment in achieving the DQO was assessed through the application of data quality indicators (DQI) as defined by:

Precision:	A quantitative measure of the variability (reproducibility) of data;		
Accuracy:	A quantitative measure of the closeness of reported data to the "true" value;		
Representativeness:	The confidence (expressed qualitatively) that data are representative of each media present on the site;		
Completeness:	A measure of the useable data from a data collection activity; and		
Comparability:	The confidence (expressed qualitatively) that data can be considered equivalent for each sampling and analytical event.		

Further comments on the DQIs are presented in Appendix C.

7. Site Assessment Criteria

The Site Assessment Criteria (SAC) are the criteria which were used to the suitability of the site for the proposed land use. The Site Assessment Criteria (SAC) applied in the current investigation are informed by the CSM, which identified human and environmental receptors to potential contamination on the site, as well as consideration of the proposed development.

The laboratory soil analytical results have been assessed against the investigation and screening levels in Schedule B1 the National Environment Protection Council (NEPC) guidelines (NEPC 2013). The NEPC guidelines are endorsed by the EPA under the CLM Act 1997. Schedule B1 (NEPC 2013) provides investigation and screening levels for commonly encountered contaminants which are applicable to generic land uses, and where relevant, also include consideration of soil type and the depth of contamination. It should be highlighted that the investigation and screening levels are not intended to be used as clean up levels, and any contaminants which have concentrations that exceed the investigation/ screening levels should be further assessed using a Tier 2 risk assessment. Health Screening levels for direct contact with contaminants are adopted from the Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE) Technical Report no.10 (Friebel and Nadebaum 2011), in accordance with NEPC (2013).

Groundwater laboratory analytical results have been assessed against the groundwater investigation levels (GIL) adopted in NEPC (2013) which are based on the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG 2018). The 95% Level of Protection (LOP) has been adopted with the exception of contaminants with the potential to bioaccumulate, which have been assessed with reference to the 99% LOP in accordance with the guidance.

Appendix D, outlines the relevant investigation and screening levels adopted for soil and groundwater, as documented in NEPC (2013). All site specific and/or theoretical assumptions relevant to the selection of the investigation and screening levels have been outlined in each sub-section in Appendix D as required.

8. Field Work Results

8.1 Observations

At the time of sampling, the site was observed to consist of two portions of vacant land bisected by Kamira Court. The northern portion of the site was fenced-off and bound by Villawood Road, Kamira Avenue and Kamira Court, and the southern portion was bound by Kamira Avenue, Kamira Court, an open public park / path to the south and vacant land at the rear of the commercial buildings to the east. The ground surface in both portions comprised open grassed areas with minimal tree cover and minor amounts of anthropogenic material, possibly fly tipped, visible on the surface.

Fragments of potential asbestos containing material (ACM-1 to ACM-4) were observed at the ground surface in the north-west portion of the site, close to the boundary fence. The source of the fragments is not known, however, given the proximity to the boundary fence, it is possible that the fragments were introduced from outside the site. Laboratory analysis on one of the samples (ACM-2) confirmed the presence of asbestos. Based upon the similarity of the fragments the remaining samples are presumed to contain asbestos.

8.2 Soil

The subsurface conditions encountered in the test pits and boreholes excavated in this current investigation are presented in the test pit logs in Appendix E, accompanied by notes for the related descriptive terms and classification methods. The test locations of both the current and previous investigations are shown on Drawing 1, Appendix A. The materials encountered in the test pits and boreholes (current investigation) can be described as follows:

- FILL: Gravelly sand with igneous gravels (directly beneath Kamira Court road surface) and silty / gravelly clay & clay with gravels and anthropogenic inclusions, including concrete, brick, tile and wood. A fragment of potential ACM (material sample A1) collected in the fill from MW1 was analysed in the laboratory and confirmed to contain asbestos;
- RESIDUAL SOILS: Typically, low to medium or medium to high plasticity, red-brown mottled grey, brown with silt and trace gravels; and
- SHALE: Grey and grey-brown, apparently low to medium strength Bringelly Shale.

With the exception of bonded asbestos, no other obvious signs of contamination were observed.

PID results were all <1 ppm which indicates a low potential for contamination from volatile chemicals.

8.3 Groundwater

Groundwater wells were constructed in boreholes MW01 - MW03, and details of the well construction are provided in the borehole logs in Appendix D. Field sheets detailing the development and sampling of the wells are provided in Appendix E.

Groundwater was measured between 7.0 to 8.55 m bgl at the time of sampling. Based on the regional topography and the triangulation of measured water levels at this time, a groundwater flow direction towards the north east is interpreted. It should be noted that groundwater levels change over time.

No Phase separated hydrocarbons were observed or recorded using an interface meter during both well development and sampling. Groundwater parameters were only available from one test location (MW1) due to insufficient well volumes at MW2 and MW3, where the collection of samples was prioritised over measuring parameters. Stabilised groundwater parameters indicate slightly elevated electrical conductivity (EC) at 6.1 mS/cm compared to a desirable freshwater EC of approximately 0.8 mS/cm indicating brackish water, in addition to a measured pH of 5.51 indicating slightly acidic conditions.

Groundwater was observed to be pale grey-brown to dark grey-brown, likely due to cuttings from the natural shale being present in the annulus of the well at the time of sampling.

At the time of the site works no surface water was observed at the locations previously identified in DP (2019).

9. Laboratory Testing

The results of the laboratory analysis for the current investigation are summarised in Appendix G. Laboratory certificates of analysis, chain-of-custody documentation and sample receipt advice are provided in Appendix H.

9.1 Soil

Table G1, Appendix G summarises the soil laboratory results relative to the SAC. All samples analysed returned results less than he laboratory practical quantification limit (PQL) and / or adopted health-based SAC. Exceedances of the adopted ecological limits were detected in samples BH1/0.8-1.0 and BH2/0.3-0.5 for copper and TRH (C16-C34).

Asbestos was not detected in any of the analysed soil samples, however, asbestos was detected in two material samples, one of which (A1) was recovered from borehole MW2 and the other from the ground surface at the north west corner of the site (ACM-2). The locations of the tested material samples are shown in Drawing 2, Appendix A.

9.2 Preliminary Waste Classification

A six-step procedure for determining the type of waste and the waste classification is provided in the NSW EPA *Waste Classification Guidelines* (EPA 2014a). Part of the procedure, for materials not classified as special waste or pre-classified waste, is a comparison of analytical data initially against contaminant threshold (CT) values specific to a waste category. Alternatively, the data can be assessed against specific contaminant concentration (SCC) thresholds when used in conjunction with toxicity characteristic leaching procedure (TCLP) thresholds.

The CT, SCC, and TCLP values relevant to this waste classification are shown in Table G2 (Appendix G).

The following Table 3 presents the results of the six-step procedure outlined in EPA (2014a) for determining the type of waste and the waste classification. This process applies to the fill at the site.

Table 3: Six Step Classification

	Step	Comments	Rationale
1.	Is it special waste?	Yes (refer to Drawing 2, Appendix A)	Asbestos containing materials were detected at one test location, with additional fragments of bonded asbestos observed on the ground surface as shown in Drawing 2, Appendix A.
			At all other test locations, no asbestos-containing materials (ACM), or coal tar, clinical or related waste, or waste tyres were observed in the boreholes. Asbestos was not detected by the analytical laboratory.
2.	Is it liquid waste?	No	Materials composed of a soil matrix.
3.	Is the waste "pre-classified"?	No	Fill did not fall into one of the pre-classified categories.
4.	Does the Waste have hazardous waste characteristics	No	Waste not observed to / or considered at risk to contain explosives, gases, flammable solids, oxidising agents, organic peroxides, toxic substances or corrosive substances, substances liable to spontaneous combustion.
5.	Chemical Assessment	Conducted	Refer to Table G2 in Appendix G
6.	Is the Waste Putrescible?	No	All observed components of filling composed of materials pre-classified as non-putrescible ^a (i.e., soil).

Note: a wastes that are generally not classified as putrescible include soils, timber, garden trimmings, agricultural, forest and crop materials, and natural fibrous organic and vegetative materials (EPA, 2014).

As shown in Table G2 (Appendix G) all contaminant concentrations for the analysed fill samples were within the contaminant thresholds (CT1s) for General Solid Waste (GSW with the exception of nickel (59 mg/kg BH1/0.05-0.15) and chromium (110 mg/kg BD1/20191126, replicate sample of TP9/0-0.3 m) exceeding CT1 but within CT2. TCLP testing conducted on BD1/20191126 resulted in concentrations below SCC1 and TCLP1.

Asbestos containing materials were detected at one test location, with additional fragments of bonded asbestos identified on the ground surface as shown in Drawing 2, Appendix A.

Based on the field observations and analytical data, the fill material, as described in the attached logs (Appendix G) and Section 8, is preliminary classified *in situ* as:

- For the yellow hatched areas shown in Drawing 2, Appendix A as General Solid Waste (non-putrescible) Special Waste (asbestos);
- For the green hatched areas shown in Drawing 2, Appendix A as **Restricted Waste (non-putrescible)**; and
- For areas not within the hatched areas shown in Drawing 2, Appendix A as **General Solid Waste** (non-putrescible).

Given the concentration of BH1/0.05-1.15 is within SCC1 TCLP, additional TCLP analysis may reduce the classification within the green hatched area. Additionally, based upon the presence of building rubble and the limited detection of ACM it is possible that additional undetected ACM may be present in fill across the site. As such it is recommended that excavation of fill is conducted in a way to minimise the generation of large stockpiles of material which may potentially cross contaminate fill with ACM.

9.2.1 Conditions

Division 4, Section 45, of *The Protection of the Environment Operations (Waste) Regulation 2014* states that it is an offence for waste to be transported to a place that cannot lawfully be used as a facility to accept that waste. It is the duty of the owner and transporter of the waste to ensure that the waste is disposed of appropriately. DP does not accept liability for the unlawful disposal of waste materials from any site. DP accepts no responsibility for the material tracking, loading, management, transport or disposal of waste from the site. Before disposal of the material to a licensed landfill is undertaken, the waste producer will be required to obtain prior consent from the landfill.

Both the receiving site and the site disposing of the material should satisfy the requirements of the licence before disposal of the material is undertaken. Note that appropriate prior arrangement with the receiving site / relevant authorities should be obtained prior to the disposal of any material off site. The receiving site should check to ensure that the material received matches the description provided in this report and contains no cross contamination.

9.3 Limited ENM Assessment

A limited ENM assessment was conducted at two test locations (TPA and TPB) where small stockpiles of fill material were generated by excavating fill material down to natural soils. The stockpile fill material was subsequently bulk screened on-site using a sieve bucket attached to an excavator. Composite and discrete samples were then recovered from the screened material and analysed as per the requirements of the ENM Order (EPA 2014b).

The objective of this limited assessment was to validate a trial ENM test on excavated materials whereby low quantities of generally larger sized anthropogenic material could be separated using a sieve bucket attachment on an excavator. It is understood that this trial ENM test will be used to inform future earthworks and waste management for a proposed future residential development at the site.

9.3.1 Assessment Criteria

The ENM Order provides a definition of excavated natural material as naturally occurring rock and soil (including but not limited to materials such as sandstone, shale, clay and soil) that has:

- a) Been excavated from the ground;
- b) Contains at least 98% (by weight) natural material; and
- c) Does not meet the definition of Virgin Excavated Natural Material in the Act.

Excavated natural material does not include material located in a hotspot; that has been processed; or that contains asbestos, Acid Sulfate Soils (ASS), Potential Acid Sulfate soils (PASS) or sulfidic ores.

The ENM Order states that the generator must not supply excavated natural material waste to any person if, in relation to any of the chemical and other attributes of the excavated natural material:

- The chemical concentration or other attribute of any sample collected and tested as part of the characterisation of the excavated natural material exceeds the absolute maximum concentration or other value listed in Column 3 of Table 4; and
- The average concentration or other value of that attribute from the characterisation of the excavated natural material (based on the arithmetic mean) exceeds the maximum average concentration or other value listed in Column 2 of Table 4; and
- The absolute maximum concentration or other value of that attribute in any excavated natural material supplied under this order must not exceed the absolute maximum concentration or other value listed in Column 3 of Table 4.

9.3.2 Assessment Procedure

The following Table 4 presents the results of the assessment for ENM with reference to the ENM Order (EPA 2014b).

	ltem	Comments	Rationale
1. Are the m	naterials acid sulfate soils?	No	NSW Acid Sulfate Soil Risk Mapping (1994- 1998) data, supplied by NSW Department of Environment and Climate Change, indicates that the site is within an area low probability of occurrences of acid sulfate soils.
2. Does the	material contain asbestos?	No *	No asbestos-containing materials (ACM) were observed in the subject materials. No asbestos was detected in the analysed samples.
	ampling been undertaken in ce with Tables 1 and 4 of Order?	Yes	Sample numbers in stockpiled materials are in accordance with the ENM Order.
	nalysis been carried out in ce with the ENM Order?	Yes	All samples were analysed in a NATA accredited laboratory for the chemical and other attributes listed in Table 4 of the ENM Order.
chemical	aximum and average concentrations comply with f the ENM Order?	Yes	Refer to attached Table G3.

Table 4: ENM Classification Procedure

NOTE: * As discussed in Section 9.1, ACM has been found at one location in the fill.

The laboratory test results are summarised in the attached Table G3. All analytical results were within the criteria required by the ENM Order (EPA 2014b).

Based on the results presented within this limited assessment it is possible that materials within and nearby TPA and TPB may be classified as ENM, if appropriate *ex-situ* testing is conducted on materials which have been separated of larger anthropogenic materials following excavation. However, it is noted that anthropogenic materials were observed to be passing through the sieved fraction of materials from both TPA and TPB, and given the possible variability of fill, no certainty can be given that all excavated material in the vicinity of the test locations, or other parts of the site, will meet the definition of ENM as prescribed in EPA (2014b).

Any additional fill material across the site would require further testing in accordance with the ENM Order (EPA 2014b) to be classified as ENM. Furthermore, it is noted that asbestos was detected at select locations (as shown in Drawing 2, Appendix A) and varying amounts of anthropogenic materials have been detected in fill which may exceed the ENM Order (EPA 2014b) requirements. To assist in potentially classifying any additional material as ENM it is recommended to excavate fill in such a way to generate smaller sized stockpiles, subject to further analysis.

It is also noted that the ENM Order does not allow for processing of material. Sieving may be seen as a method of processing and should be avoided if compliance with the ENM Order is sought. A method of manually removing large anthropogenics may be an appropriate method of managing the soils as an alternative. Again, this should be completed and assessed in small batches as recommended above.

9.4 Groundwater

Table G4, Appendix G summarises the groundwater laboratory results relative to the SAC. All measured contaminants of concern were below the PQL and / or the SAC with the exception of nickel and zinc.

Nickel and zinc concentrations were similar across the three monitoring wells, suggesting that the source is not likely to be within the site. The concentrations are likely to be representative of regional conditions.

Samples MW1 and MW2 reported elevated hardness values > $3000 \text{ mg CaCO}_3/L$. It is considered these elevated values are attributed to the presence of natural minerals present in the shale cuttings visible in the extracted groundwater. Laboratory pH values ranged from 7.2-8.2 compared to the field stabilised value of 5.5.

Elevated concentrations of TPH (>C10-C34) in MW2 and MW3 were detected in two of the wells located approximately upgradient of the inferred local groundwater flow direction and at the periphery of the site. It is noted that the TPH fractions observed do not have health screening levels prescribed in NEPC (2013).

Examination of the provided chromatograms by the laboratory for the analysed samples (MW2 and MW3) did not identify a specific set of compounds but rather a broad range of long chain length hydrocarbons contributing to the total TRH measured. Further analysis using silica gel clean-up to remove any organic compounds contributing to the total measured TRH resulted in only slightly lowered TPH values for both samples.

Furthermore, based upon the measurements at the time of sampling groundwater depth was observed from 7.0 to 8.55 m bgl across the site, it is understood that the proposed development at this stage is likely to only comprise a single level basement such that the measured groundwater is approximately 3 - 3.55 m below the proposed final level for a conservative basement depth of 4 m. Despite this, it is noted that groundwater levels are transient and can change with weather conditions and time. In particular, groundwater was sampled at the site during a relatively dry period such that during a wetter period the groundwater levels may change.

Overall, the elevated TPH levels are not considered to present an immediate risk to human health for the proposed land-use and would primarily be a consideration should any dewatering and associated waste disposal, be necessary during the proposed development. However, it is recommended that additional groundwater testing be conducted to verify the results and ascertain whether actual significant contamination is migrating on-site.

10. Conclusion

Based upon a review of previous investigations and the results of the current investigation targeting previous data gaps, the soils beneath the site largely consist of potentially reworked natural clays (fill) with low to trace amounts of anthropogenic materials including building rubble.

With the exception of soils from beneath Kamira Court and limited asbestos finds (as shown in Drawing 2, Appendix A), the concentrations of the selected analytes in all soils were found to be within the SAC. The soils beneath Kamira Court reported exceedances of ecological based SAC, which may be managed by removing from site as part of bulk excavation works (for basements) or relocating in areas not exposed to proposed landscaping.

With the exception of the asbestos detected at MW1 in shallow soils, the remainder of the asbestos finds were observed on the ground surface, localised in the north west corner of the site (as shown in Drawing 2, Appendix A). It is considered possible that the materials may have been fly tipped on the site. However, based upon the presence of anthropogenic materials, including building rubble commonly associated with ACM it is possible that additional ACM is present in soils between test locations and other un-observed parts of the site. Soils impacted with ACM are to be waste classified for off-site disposal. In the areas where surficial asbestos was identified, the contamination risk may potentially be managed via a process of 'emu picking' visible ACM, followed by a surface clearance by a suitability qualified consultant or hygienist.

Furthermore, it is recommended that an unexpected finds protocol is prepared and implement during any site works to address any soils potentially impacted by contamination (such as asbestos). Any soils potentially impacted by contamination which are identified during site works are to be segregated and assessed by a suitability qualified consultant to confirm their suitability to remain on site, or appropriate waste classification for off-site disposal. The process would be outlined in the unexpected finds protocol.

Groundwater results indicate that there is no obvious contamination from the previous historic dry cleaner which operated 43 m south-east of the site. Additionally, no exceedances of the adopted SAC were detected indicating that groundwater contamination is not present. Detection of elevated TPH levels are not considered to pose an immediate health risk for the proposed development but are

considered to be a potential issue for any future dewatering and waste disposal. Therefore, additional groundwater monitoring is recommended to verify the test results and fully characterise the potential for contamination to be migrating on-site.

On basis of the results of previous investigations and the results presented in this report, it is considered that there is a low to medium likelihood of significant contamination risks to human health or the environment associated with the site. It is considered that the site can be made suitable from a contamination perspective, for the proposed residential development subject to the recommendations listed above.

11. References

DP (2008) - Report on Preliminary Geotechnical and Contamination Assessment, Kamira Court - Urban Renewal Projects, Villawood, NSW, DP Report 45789 dated 2008.

DP (2010) - *Report on In-Situ Waste Classification Assessment, Kamira Court, Villawood,* DP Report 45789.01 dated May 2012.

DP (2019) - Report on Preliminary Site (Contamination) Investigation, Proposed Residential Development, Kamira Avenue and Villawood Road, Villawood. DP Report 86819.00.R.001.Rev1 dated 22 August 2019.

EPA (2014a) - NSW EPA Waste Classification Guidelines. Part 1: Classifying Waste.

EPA (2014b) - NSW EPA The Recovered ENM Order 2014.

Friebel, E and Nadebaum, P (2011), *Health screening levels for petroleum hydrocarbons in soil and groundwater. Part 1: Technical development document,* CRC CARE Technical Report no. 10, CRC for Contamination Assessment and Remediation of the Environment, Adelaide, Australia

POEO Act - Protection of the Environment Operations Act 1997.

NSW EPA - Web Site.

NEPC (2013) - National Environment Protection (Assessment of Site Contamination) Measure 1999 amended 2013.

NSW EPA (1995) - Sampling Design Guidelines.

12. Limitations

Douglas Partners (DP) has prepared this report (or services) for this project at Kamira Court, Villawood in accordance with DP's proposal SYD 191077 dated 22 October. The work was carried out under DP's conditions of Engagement. This report is provided for the exclusive use of the New South Wales Land and Housing Corporation for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and/or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

Asbestos has been detected by observation or by laboratory analysis, either on the surface of the site, or in fill materials at the test locations sampled and analysed. Building demolition materials, such as concrete, brick and tile, were also located in previous below-ground filling and these are considered as indicative of the possible presence of additional hazardous building materials (HBM), including asbestos in fill across the site.

Although the sampling plan adopted for this investigation is considered appropriate to achieve the stated project objectives, there are necessarily parts of the site that have not been sampled and analysed. This is either due to undetected variations in ground conditions and/or to budget constraints. It is therefore considered possible that HBM, including asbestos, may be present in unobserved or untested parts of the site, between and beyond sampling locations, and hence no warranty can be given that asbestos is not present.

The contents of this report do not constitute formal design components such as are required, by the Health and Safety Legislation and Regulations, to be included in a Safety Report specifying the hazards likely to be encountered during construction and the controls required to mitigate risk. This design process requires risk assessment to be undertaken, with such assessment being dependent

upon factors relating to likelihood of occurrence and consequences of damage to property and to life. This, in turn, requires project data and analysis presently beyond the knowledge and project role respectively of DP. DP may be able, however, to assist the client in carrying out a risk assessment of potential hazards contained in the Comments section of this report, as an extension to the current scope of works, if so requested, and provided that suitable additional information is made available to DP. Any such risk assessment would, however, be necessarily restricted to the environmental components set out in this report and to their application by the project designers to project design, construction, maintenance and demolition.

Douglas Partners Pty Ltd

Appendix A

About This Report

Drawings

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

CLIENT:	NSW Land and H	TITLE:		
OFFICE:	Sydney	DRAWN BY		
SCALE:	1:850	DATE:	31.01.2020	

Sampling Locations (Current and Previous) Detailed Site (Contamination) Investigation Kamira Court, Villawood

0

Locality Map

Legend

- Site Boundary
- 50 Part Kamira Court
- 55 Part Lot 31, DP 36718
- 8 Test Pits (Previous Investigation, 2008)
- 8 Test Pits (Previous Investigation, 2010)
- -Test Pits (Previous Investigation, 2019)
- Groundwater Wells
- **Borehole Locations**
- -**Testpit Locations**
- -ENM Investigation Testpits

25	50	75 m

NOTE: 1: Base drawing from Nearmap.com (Dated 25/07/2019)

	PROJECT No:	86819.01
$\left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	DRAWING No:	1
	REVISION:	0

l	CLIENT:	NSW Land and Housing Corporation (LAHC)			TITL
ſ	OFFICE:	Sydney	DRAWN BY		
ſ	SCALE:	1:850	DATE:	31.01.2020	

LE: Asbestos Finds and In-Situ Waste Classification Areas Detailed Site (Contamination) Investigation Kamira Court, Villawood

n

Leg	end	5		N	
	Site	Bounda	Local i ry	ity Map	
50	Part	: Kamira	Court		
50	Part	: Lot 31,	DP 3671	.8	
	Abe	stos Fino	ds		
	CT1	Exceed	ances		
•	Abesto	os Materi	ial Sampl	les	
•	Test P	Pits (Prev	ious Inv	estigatior	n, 2008)
•	Test P	Pits (Prev	vious Inv	estigatior	n, 2010)
	Test P	Pits (Prev	vious Inv	estigatior	n, 2019)
	Grour	ndwater	Wells		
¢	Boreh	ole Loca	itions		
•	Testp	it Locatio	ons		
•	ENM]	Investiga	ation Tes	tpits	
	25	5	50		75 m
OTE:	drowing			Dated 25/	7/2010)

1: Base drawing from Nearmap.com (Dated 25/07/2019)

	PROJECT No:	86819.01
$\left(\begin{array}{c} / \\ N \end{array} \right)$	DRAWING No:	2
	REVISION:	0

Appendix B

Site Photographs

Photo 2: SPA prior to sieving

Douglas Partners Geotechnics Environment Groundwater	Site Ph	otographs	PROJECT:	86819.01
	Detailed Site Investigation		PLATE No:	1
	Kamira Avenue and Villawood Road, Villawood		REV:	0
	CLIENT	NSW Land and Housing Corporation	DATE	05/02/2020

Photo 4: SPA retained fraction

Douglas Partners Geotechnics Environment Groundwater	Site Ph	otographs	PROJECT:	86819.01
	Detailed Site Investigation		PLATE No:	2
	Kamira Avenue and Villawood Road, Villawood		REV:	0
	CLIENT	NSW Land and Housing Corporation	DATE	05/02/2020

Photo 5: SPA additional anthropogenics in passing fraction (plastic & concrete)

Photo 6: SPA larger anthropogenics in retained fraction

Douglas Partners Geotechnics Environment Groundwater	Site Ph	otographs	PROJECT:	86819.01
	Detailed Site Investigation		PLATE No:	3
	Kamira Avenue and Villawood Road, Villawood		REV:	0
	CLIENT	NSW Land and Housing Corporation	DATE	05/02/2020

Photo 8: SPB prior to sieving

Douglas Partners Geotechnics Environment Groundwater	Site Ph	Site Photographs		86819.01
	Detailed Site Investigation		PLATE No:	4
	Kamira Avenue and Villawood Road, Villawood		REV:	0
	CLIENT	NSW Land and Housing Corporation	DATE	05/02/2020

Photo 9: SPB passing fraction

Photo 10: SPB retained fraction

Douglas Partners Geotechnics Environment Groundwater	Site Ph	otographs	PROJECT:	86819.01
	Detailed Site Investigation		PLATE No:	5
	Kamira Avenue and Villawood Road, Villawood		REV:	0
	CLIENT	NSW Land and Housing Corporation	DATE	05/02/2020

Photo 11: Southern portion of site, fly tipped waste

Photo 12: Northern portion of site

Douglas Partners Geotechnics Environment Groundwater	Site Ph	Site Photographs		86819.01
	Detailed Site Investigation		PLATE No:	6
	Kamira Avenue and Villawood Road, Villawood		REV:	0
	CLIENT	NSW Land and Housing Corporation	DATE	05/02/2020

Photo 14: Surficial ACM fragment ACM-3

	Site Ph	otographs	PROJECT:	86819.01
Douglas Partners	Detaile	d Site Investigation	PLATE No:	7
Geotechnics Environment Groundwater		Avenue and Villawood /illawood	REV:	0
	CLIENT	NSW Land and Housing Corporation	DATE	05/02/2020

Appendix C

Quality Assurance and Quality Control

DATA QUALITY ASSESSMENT

Q1. Data Quality Objectives

The Detailed Site Investigation (DSI) was prepared with reference to the seven step data quality objective (DQO) process which is provided in Appendix B, Schedule B2 of the *National Environment Protection (Assessment of Site Contamination) Measure* 1999 as amended 2013 (NEPC, 2013). The DQO process is outlined as follows:

- Stating the Problem;
- Identifying the Decision;
- Identifying Inputs to the Decision;
- Defining the Boundary of the Assessment;
- Developing a Decision Rule;
- Specifying Acceptable Limits on Decision Errors; and
- Optimising the Design for Obtaining Data.

The DQOs have been addressed within the report as shown in Table Q1.

Table	Q1:	Data	Quality	Objectives
-------	-----	------	---------	------------

Data Quality Objective	Report Section Where Addressed
State the Problem	S1 Introduction
Identify the Decision	S10 Conclusion
Identify Inputs to the Decision	S1 Introduction
	S7 Site Assessment Criteria / Appendix D
	S8 Field Work Results
	S9 Laboratory Testing
Define the Boundary of the Assessment	S1.1 Site Identification and Description
	Site Drawings 1 - Appendix A
Develop a Decision Rule	S7 Site Assessment Criteria / Appendix D
Specify Acceptable Limits on Decision Errors	S6 Fieldwork
	QA / QC Procedures and Results - Appendix C
Optimise the Design for Obtaining Data	S2 Scope of Works
	S6 Fieldwork Methods and Rationale
	QA / QC Procedures and Results - Appendix D

Q2. FIELD AND LABORATORY QUALITY CONTROL

The field and laboratory quality control (QC) procedures and results are summarised in Tables Q2 and Q3. Reference should be made to the fieldwork and analysis procedures in Section 6 and the laboratory results certificates in Appendix H for further details.

Frequency	Acceptance Criteria	Achievement
5% primary samples	RPD <30% inorganics), <50% (organics)	yes ¹
1 per field batch	60-140% recovery	yes
1 per field batch	<pql lor<="" td=""><td>yes</td></pql>	yes
1 per day	<pql lor<="" td=""><td>yes²</td></pql>	yes ²
	5% primary samples 1 per field batch 1 per field batch	5% primary samplesRPD <30% inorganics), <50% (organics)1 per field batch60-140% recovery1 per field batch <pql lor<="" td=""></pql>

Table Q2: Field QC

NOTES: 1 qualitative assessment of RPD results overall; refer Section Q2.1

2 qualitative assessment

Table Q3: Laboratory QC

Item	Frequency	Acceptance Criteria	Achievement
Analytical laboratories used		NATA accreditation	yes
Holding times		In accordance with NEPC (2013) which references various Australian and international standards	yes
Laboratory / Reagant Blanks	1 per lab batch	<pql< td=""><td>yes</td></pql<>	yes
Laboratory duplicates	10% primary samples	Laboratory specific ¹	
Matrix Spikes	1 per lab batch	70-130% recovery (inorganics);	yes
		60-140% (organics);	
		10-140% (SVOC, speciated phenols)	
Surrogate Spikes	organics by GC	70-130% recovery (inorganics);	yes
		60-140% (organics);	
		10-140% (SVOC, speciated phenols)	
Control Samples	1 per lab batch	70-130% recovery (inorganics);	yes
		60-140% (organics);	
		10-140% (SVOC, speciated phenols)	

NOTES: 1 Envirolab: <5xPQL – any RPD; >5xPQL – 0-50%RPD

In summary, the QC data is considered to be of sufficient quality to be acceptable for the assessment.

Q2.1 Intra-Laboratory Replicates

Intra-laboratory replicates were analysed as an internal check of the reproducibility within the primary laboratory ELS and as a measure of consistency of sampling techniques. The comparative results of analysis between original and intra-laboratory replicate samples are summarised in Table Q4 and Q5.

Note that, where both samples are below LOR / PQL the difference and RPD has been given as zero. Where one sample is reported below LOR / PQL, but a concentration is reported for the other, the LOR / PQL value has been used for calculation of the RPD for the less than LOR / PQL sample. Where reported values are both less than 5 times the LOR / PQL the RPD has been given as zero.

							Meta	als						РАН			TRH				BTEX		
Lab	Sample ID	Date Sampled	Units	Arsenic	Cadmium	Chromium (III+VI)	Copper	Lead	Mercury	Nickel	Zinc	Napthalene	Benzo(a)pyrene	Benzo(a)pyrene TEQ	Total PAH	F1 ((C6-C10)-BTEX)	F2 (>C10-C16 less Naphthalene)	F3 (>C16-34)	F4 (>C34-40)	Benzene	Toluene	Ethylbenzene	Total Xylenes
ELS	BD3/20191217	17/12/2019		6	<0.4	14	23	14	<0.1	8	45	<1	<0.05	<0.5	<0.05	<25	<50	<100	<100	<0.2	<0.5	<1	<1
ELS	MW1/0-0.2	17/12/2019		5	<0.4	11	27	11	<0.1	5	34	<1	<0.05	<0.5	<0.05	<25	<50	<100	<100	<0.2	<0.5	<1	<1
	Difference		mg/kg	1.0	0.0	3.0	4.0	3.0	0.0	3.0	11.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	RPD		%	-	-	24.0	16.0	24.0	-	46.2	27.8	-	-	-	-	-	-	-	-	-	-	-	-
ELS	BD1/20191126	26/11/2019		11.0	<0.4	110.0	42.0	39.0	0.2	7.0	68.0	<1	<0.05	<0.5	<0.05	<25	<50	<100	<100	<0.2	<0.5	<1	<1
ELS	TP9/0-0.3	26/11/2019		10.0	<0.4	59.0	24.0	32.0	<0.1	10.0	46.0	<1	<0.05	<0.5	<0.05	<25	<50	<100	<100	<0.2	<0.5	<1	<1
	Difference		mg/kg	1.0	0.0	51.0	18.0	7.0	0.1	3.0	22.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	RPD		%	-	-	60.4	54.5	19.7	-	35.3	38.6	-	-	-	-	-	-	-	-	-	-	-	-

Table Q4: Relative Percentage Difference Results – Intra-laboratory Soil Replicates

Notes: not applicable, not tested

				Metals							VOC				
Lab	Sample ID	Date Sampled	Arsenic	Cadmium	Chromium (III+VI)	Copper	Lead	Mercury	Nickel	Zinc	Naphthalene	TCE	Chloroform		
ELS	MW1	24/01/2020	<1	0.2	<1	1	<1	<0.05	16	23	<1	<1	<1		
ELS	BD1/20200124	24/01/2020	<1	0.1	<1	<1	<1	<0.05	15	15	<1	<1	<1		
Differe	ence	mg/kg	0.0	0.1	0.0	0.0	0.0	0.0	1.0	8.0	0.0	0.0	0.0		
RP	D	%	-	-	-	-	-	-	6.5	42.1	-	-	-		

Table Q5: Relative Percentage Difference Results - Intra-laboratory Soil Replicates

Notes: not applicable, not tested

The calculated RPD values were within the acceptable range of \pm 30 for inorganic analytes and \pm 50% for organics with the with the exception of those in bold. However, this is not considered to be significant because: The typically low actual differences in the concentrations of the replicate pairs

- where some RPD exceedances occurred. High RPD values reflect the small differences between two small numbers;
- The number of replicate pairs being collected from fill soils which were heterogeneous in nature;
- Soil replicates, rather than homogenised soil duplicates, were used to minimise the risk of possible volatile loss, hence greater variability can be expected;
- Most of the recorded concentrations being relatively close to the LOR / PQL. High RPD values reflect the low concentrations;
- The majority of RPDs within a replicate pair being within the acceptable limits; and a
- All other QA / QC parameters met the DQIs.

The overall inter-laboratory replicate comparisons indicate that the sampling technique was generally consistent and repeatable.

Q.2.2 Trip Spike

The purpose of a trip spike is to assess the potential for loss of volatile analytes to have occurred between the time of collection and analysis of the sample by the laboratory.

For soils, laboratory preparation of the trip spike involved putting 1mL of BTEX (using a 1500 ppm BTEX trip spike standard) into two jars which were cross referenced and labelled 'trip spike' and 'control'. Both jars were sealed. The trip spike was taken onto site and subject to the same jar storage and transfer as the field samples. The control was stored by the laboratory in the refrigerator. Following receipt of the trip spike, the laboratory analysed both the trip spike and corresponding control with results of the trip spike being expressed as the % difference from the control sample.

For water trip spikes, the laboratory prepared the trip spike by injecting 220 μ L of BTEX into the trip spike. The results were then analysed and expressed as % of theoretical value of a 50ppb standard.

The generally acceptance limit for trip spikes is 60-140% in difference compared to the control or standard.

The results of the laboratory analysis for the trip spikes are shown in Tables Q6 (soil).

Table Q6: Trip Spike Results – Soils (% Recovery)

Sample ID	Benzene	Toluene	Ethylbenzene	m + p Xylene	o Xylene
Trip spike / 20201217	95	96	90	89	90

Results indicate that the percentage loss for BTEX during the trip was minimal and therefore appropriate preservation techniques were employed.

Q2.3 Trip Blank

The purpose of a trip blank is to assess the potential for transfer of contaminants into samples to have occurred between the time of collection and analysis of the sample by the laboratory. Laboratory prepared soil field blanks were taken out to the field unopened, subjected to the same preservation methods as the field samples, then analysed for the purposes of determining whether transfer of contaminants into the blank sample had occurred prior to reaching the laboratory. The results of the laboratory analysis for the field blanks are shown in Tables Q7 (soil).

Table Q7: Trip Blank Results - Soils (mg/kg)

Sample ID	C ₆ – C ₁₀ less BTEXT (F1)	Benzene	Toluene	Ethylbenzene	m + p Xylene	o Xylene
Trip blank / 20201217	<25	<0.2	<0.5	<1	<2	<1

The concentrations of the analytes were all below laboratory detection limits indicating that significant cross contamination had not occurred during the course of the round trip from the site to the laboratory.

Q2.4 Rinsate Blank

The results of a rinsate blank taken during groundwater sampling is presented in Table Q7.

Table Q7: Rinsate Blank Results - water (µg/L)

Sample ID	ВТЕХ	Chloroform	Bromodichlor omethane	Dibromochlor omethane	Other VOC
R01 / 20200124	<pql< td=""><td>2</td><td>2</td><td>1</td><td><pql< td=""></pql<></td></pql<>	2	2	1	<pql< td=""></pql<>

The concentrations of the analytes recorded in the rinsate samples were below the laboratory detection limits with the exception of those in bold. Detection of three VOC compounds was observed at levels at, or just above the PQL. Given the low detected levels and the lack of detection of these species in the recovered groundwater samples it is considered that the decontamination techniques employed during groundwater sampling were adequate and that the risk of cross-contamination was low.

Q3. Data Quality Indicators

The reliability of field procedures and analytical results was assessed against the following data quality indicators (DQIs):

- Completeness a measure of the amount of usable data from a data collection activity;
- Comparability the confidence (qualitative) that data may be considered to be equivalent for each sampling and analytical event;
- Representativeness the confidence (qualitative) of data representativeness of media present onsite;
- Precision a measure of variability or reproducibility of data; and
- Accuracy a measure of closeness of the data to the 'true' value.

The DQIs were assessed as outlined in the following Table Q9.

Data Quality Indicator	Method(s) of Achievement
Completeness	Planned systematic and selected target locations sampled;
	Preparation of field logs, sample location plan and chain of custody (COC) records;
	Preparation of field groundwater sampling sheets;
	Laboratory sample receipt information received confirming receipt of samples intact and appropriateness of the chain of custody;
	Samples analysed for contaminants of potential concern (COPC) identified in the Conceptual Site Model (CSM);
	Completion of COC documentation;
	NATA endorsed laboratory certificates provided by the laboratory;
	Satisfactory frequency and results for field and laboratory QC samples as discussed in Section Q2.

Table Q9: Data Quality Indicators

Data Quality Indicator	Method(s) of Achievement
Comparability	Using appropriate techniques for sample recovery, storage and transportation, which were the same for the duration of the project;
	Works undertaken by appropriately experienced and trained DP environmental scientist / engineer;
	Use of NATA registered laboratories, with test methods the same or similar between laboratories;
	Satisfactory results for field and laboratory QC samples.
Representativeness	Target media sampled;
	Spatial and temporal distribution of sample locations;
	Sample numbers recovered and analysed are considered to be representative of the target media and complying with DQOs;
	Samples were extracted and analysed within holding times;
	Samples were analysed in accordance with the analysis request.
Precision	Acceptable RPD between original samples and replicates;
	Satisfactory results for all other field and laboratory QC samples.
Accuracy	Satisfactory results for all field and laboratory QC samples.

Based on the above, it is considered that the DQIs have been complied with. As such, it is concluded that the field and laboratory test data obtained are reliable and useable for this assessment.

Appendix D

Site Assessment Criteria

Site Assessment Criteria

S1. Soil Investigation Levels

S1.1 Health Investigation Levels

The Health Investigation Levels (HIL) and Health Screening Levels (HSL) are scientifically-based, generic assessment criteria designed to be used in the first stage (Tier 1) of an assessment of potential human health risk from chronic exposure to contaminants.

HIL are applicable to assessing health risk arising *via* all relevant pathways of exposure for a range of metals and organic substances. The HIL are generic to all soil types and apply generally to a depth of 3 m below the surface. Site-specific conditions may determine the depth to which HILs apply for other land uses.

HSL are applicable to selected petroleum compounds and fractions to assess the risk to human health via inhalation and direct contact pathways. HSL have been developed for different land uses, soil types and depths to contamination.

The generic HIL and HSL are considered to be appropriate for the assessment of contamination at the site. Given the proposed land use and based on the CSM the adopted HIL and HSL are:

• HIL-B & HSL-B - Residential.

Health screening levels for the vapour intrusion pathway have been conservatively adopted.

Table H1 shows the HILs that have been adopted by NEPC (2013) Schedule B1, Table 1A(1). Table S1 only includes contaminants to be analysed during the further investigations, not the full list provided in NEPC (2013).

Table S1: Health Investigation Levels

Contaminant	HIL B (mg/kg)
Metals and Inorganics	
Arsenic	500
Cadmium	150
Chromium (IV)	500
Copper	30,000
Lead	1,200
Mercury (inorganic)	120
Nickel	1,200
Zinc	60,000
РАН	
Carcinogenic PAH (as benzo(a)pyrene TEQ) ¹	4
Total PAH	400
Phenols	
Pentachlorophenol (used as an initial screen)	130
OCP	
DDT + DDD + DDE	600
Aldrin + Dieldrin	10
Chlordane	90
Endosulfan (total)	400
Endrin	20
Hepatchlor	10
НСВ	15
Methoxychlor	500
Other Pesticides	
Chlorpyrifos	340
Other Organics	
PCB ²	1

Notes:

1 Sum of carcinogenic PAH.

2 Non dioxin-like PCBs only.

Table S2 shows petroleum hydrocarbon compounds adopted from NEPC (2013) Schedule B1, Table 1A(3). The HSLs are based on overlying soil type and depth. HSLs for sand have been used based on the sandy clay fill material encountered at the site in the previous boreholes. Given the general depth of fill encountered in the investigation during the intrusive works, and using the most conservative values, the depth range of 0 m to <1 m has been used.

Contaminant		HSL B (mg/kg)
Contaminant	Soil Type	Depth 0 m to <1m
Toluene		160
Ethylbenzene		55
Xylenes		40
Naphthalene	Sand	3
Benzene		0.5
TRH C6-C10 less BTEX [F1]		40
TRH >C10-C16 less naphthalene [F2]		230

Table S2: Soil Health Screening Levels for Vapour Intrusion

S1.2 Ecological Investigation and Screening Levels

Ecological Investigation Levels (EIL) have been derived for selected metals and organic compounds and are applicable for assessing risk to terrestrial ecosystems (NEPC, 2013). EIL depend on specific soil physiochemical properties and land use scenarios and generally apply to the top 2 m of soil, which corresponds to the root zone and habitation zone of many species. The EIL is determined for a contaminant based on the sum of the ambient background concentration (ABC) and an added contaminant limit (ACL). The ABC of a contaminant is the soil concentration in a specific locality that is the sum of naturally occurring background levels and the contaminants levels that have been introduced from diffuse or non-point sources (e.g., motor vehicle emissions). The ACL is the added concentration (above the ABC) of a contaminant above which further appropriate investigation and evaluation of the impact on ecological values is required.

The EIL is calculated using the following formula:

EIL = ABC + ACL

The ABC is determined through direct measurement at an appropriate reference site (preferred) or through the use of methods defined by Olszowy et al *Trace element concentrations in soils from rural and urban areas of Australia*, Contaminated Sites monograph no. 4, South Australian Health Commission, Adelaide, Australia 1995 (Olszowy, 1995) or Hamon et al, *Geochemical indices allow estimation of heavy metal background concentrations in soils*, Global Biogeochemical Cycles, vol. 18, GB1014, (Hamon, 2004). ACL is based on the soil characteristics of pH, CEC and clay content.

EIL (and ACLs where appropriate) have been derived in NEPC (2013) for only a short list of contaminants comprising As, Cu, Cr (III), DDT, naphthalene, Ni, Pb and Zn. An *Interactive (Excel) Calculation Spreadsheet* may be used for calculating site-specific EIL for these contaminants, and has been provided in the ASC NEPM Toolbox available on the SCEW (Standing Council on Environment and Water) website (http://www.scew.gov.au/node/941).

The adopted EIL, derived from the *Interactive (Excel) Calculation Spreadsheet* are shown in the following Table S3. The following site specific data and assumptions have been used to determine the EILs:

- The EILs will apply to the top 2 m of the soil profile;
- Given the likely source of soil contaminants (i.e., historical site use/fill) the contamination is considered as "aged" (>2 years); and
- ABCs have been derived using the *Interactive (Excel) Calculation Spreadsheet* using input parameters of aged soil, CEC of 9.7 cmol_o/kg and pH of 6.5 with high traffic and clay content of 25%.

	Analyte	EIL Urban residential and public open space	Comments
Metals	Arsenic	100	Adopted averaged pH of 6.5 and CEC of
	Chromium III	410	9.7 cmol _c /kg (refer Appendix E); approximate
	Copper	70	clay content 10% (refer to borehole logs, Appendix E), low traffic area (NSW).
	Lead	1,100	
	Nickel	160	
	Zinc	470	
PAH	Naphthalene	170	

Table S3: Ecological Investigation Levels (EIL) in mg/kg

Ecological Screening Levels (ESL) are used to assess the risk of selected petroleum hydrocarbon compounds, BTEX and benzo(a)pyrene to terrestrial ecosystems. ESL apply to the top 2 m of the soil profile as for EIL.

ESL have been derived in NEPC (2013) for petroleum fractions F1 to F4 as well as BTEX and Benzo(a)pyrene. Site specific data and assumptions as summarised in Table S4 have been used to determine the ESL. The more conservative soil type of coarse sand has been adopted. The adopted ESL, from Table 1B(6), Schedule B1 of NEPC (2013) are shown in Table S5.

Variable	Input	Rationale
Depth of ESL application	Top 2 m of the soil profile	The top 0 - 1 m depth below ground level corresponds to the root zone and habitation zone of many species.
Land use	Range of uses	Residential.
Soil Texture	Coarse	Based on most conservative findings noted in test bore logs.

	Analyte	ESL (Residential and open space)	Comments
TRH	C6 – C10 (less BTEX) [F1]	180*	All ESLs are low reliability
	>C10-C16 (less Naphthalene) [F2]	120*	apart from those marked with * which are moderate
	>C16-C34 [F3]	300	reliability
	>C34-C40 [F4]	2,800	
BTEX	Benzene	50	
	Toluene	85	
	Ethylbenzene	70	
	Xylenes	105	
PAH	Benzo(a)pyrene	0.7	

Table S5: Ecological Screening Levels (ESL) in mg/kg

S1.3 Management Limits

NEPC (2013) Table 1B(7) provides 'management limits' for TRH fractions, which are applied after consideration of relevant HSLs. The management limits have been adopted to avoid or minimise the following potential effects of petroleum hydrocarbons:

- Formation of non-aqueous phase liquids (LNAPL);
- Fire and explosive hazards; and
- Effects on buried infrastructure e.g., penetration of, or damage to, in-ground services by hydrocarbons.

The presence of site TRH contamination at the levels of the management limits does not imply that there is no need for administrative notification or controls in accordance with jurisdictional requirements. The adopted management limits are shown in Table S6 and have been selected based on the CSM.

Management limits for coarse material are presented in Table S6, since variable clay textures were encountered in the fill samples collected, and coarse texture management limits are more conservative of the two management limits available.

TRH Fraction	Soil Texture	Management Limit: Commercial / Industrial (mg/kg)
C ₆ -C ₁₀ [F1]	Coarse	700
>C ₁₀ -C ₁₆ [F2]	Coarse	1,000
>C ₁₆ -C ₃₄ [F3]	Coarse	2,500
>C ₃₄ -C ₄₀ [F4]	Coarse	10,000

Table S6: Management Limits for TRH Fractions in Soil

S1.4 Asbestos in Soil

Bonded asbestos-containing material (ACM) is the most common form of asbestos contamination across Australia, generally arising from:

- Inadequate removal and disposal practices during demolition of buildings containing asbestos products;
- Widespread dumping of asbestos products and asbestos containing fill on vacant land and development sites;
- Commonly occurring in historical fill containing unsorted demolition materials; and
- Importation of asbestos contaminated building products from China.

Mining, manufacturing or distribution of asbestos products may result in sites being contaminated by friable asbestos including free fibres. Severe weathering or damage to bonded ACM may also result in the formation of friable asbestos comprising fibrous asbestos (FA) and / or asbestos fines (AF).

Asbestos only poses a risk to human health when asbestos fibres are made airborne and inhaled. If asbestos is bound in a matrix such as cement or resin, it is not readily made airborne except through substantial physical damage. Bonded ACM in sound condition represents a low human health risk, whilst both FA and AF materials have the potential to generate, or be associated with, free asbestos fibres. Consequently, FA and AF must be carefully managed to prevent the release of asbestos fibres into the air.

The SAC to be adopted for the assessment of asbestos in the initial further investigation is no asbestos detected at the laboratory reporting limit of 0.1 g/kg.

S1.5 Groundwater

S1.5.1 Groundwater Investigation Levels

The Groundwater Investigation Levels (GIL) adopted in NEPC (2013) are based on *The Australian and New Zealand Guidelines for Fresh and Marine Water Quality* (ANZG 2018), default guideline values (DGV) for water quality for marine ecosystems. The 95% Level of Protection (LOP) has been adopted with the exception of contaminants with the potential to bioaccumulate, which have been assessed with reference to the 99% LOP in accordance with the guidance; an

The adopted GIL for the analytes included in the assessment (where applicable), and the corresponding source documents, are shown in Table S7 below.

Contaminant	GIL (µg/L)
Metals and Inorganics	
Arsenic	24/13
Cadmium	0.2
Chromium (IV)	3.3/1
Copper	1.4
Lead	3.4
Mercury (inorganic)	0.06
Nickel	11
Zinc	8
РАН	
anthracene	0.01
benzo(a)pyrene	0.1
naphthalene	16
phenanthrene	0.6
fluoranthene	1
Phenols	
Pentachlorophenol (used as an initial screen)	3.6
OCP	
Aldrin (used as an initial screen)	0.001
Other Pesticides	
Chlorpyrifos(used as an initial screen)	0.01
Other Organics	
PCB (Aroclor 1242 as conservative screen)	0.01

Additional notes regarding selection of GIL including details of the LOP and reliability of the values are provided in Table G5, Appendix G.

S1.5.1 Health Screening Levels - Petroleum Hydrocarbons

The generic HSL for vapour intrusion are published in NEPC (2013), Table S8 summarises the adopted HSL with

Table S8: Groundwater HSL for vapour intrusion

Analyte	HSL A & HSL B (mg/L)	Comments
Toluene	540	Depth of groundwater encountered 4 m +
Ethylbenzene	NL	
Xylenes	170	Sand chosen as the most conservative value given
Naphthalene	NL	variability of fill encountered
Benzene	0.5	
C6-C10 [F1]	200	
>C10-C16 [F2]	NL	

Appendix E

Test Logs

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

 In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

Soil Descriptions

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are generally based on Australian Standard AS1726:2017, Geotechnical Site Investigations. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)
Boulder	>200
Cobble	63 - 200
Gravel	2.36 - 63
Sand	0.075 - 2.36
Silt	0.002 - 0.075
Clay	<0.002

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)
Coarse gravel	19 - 63
Medium gravel	6.7 - 19
Fine gravel	2.36 - 6.7
Coarse sand	0.6 - 2.36
Medium sand	0.21 - 0.6
Fine sand	0.075 - 0.21

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

The proportions of secondary constituents of soils are described as follows:

In fine grained soils	(>35% fines)
-----------------------	--------------

Term	Proportion	Example
	of sand or	
	gravel	
And	Specify	Clay (60%) and
		Sand (40%)
Adjective	>30%	Sandy Clay
With	15 – 30%	Clay with sand
Trace	0 - 15%	Clay with trace
		sand

In coarse grained soils (>65% coarse)

with	clays	or	silts	

man olaye er ena		
Term	Proportion of fines	Example
And	Specify	Sand (70%) and Clay (30%)
Adjective	>12%	Clayey Sand
With	5 - 12%	Sand with clay
Trace	0 - 5%	Sand with trace
		clay

In coarse grained soils (>65% coarse)
 with coarser fraction

Term	Proportion	Example
	of coarser	
	fraction	
And	Specify	Sand (60%) and
		Gravel (40%)
Adjective	>30%	Gravelly Sand
With	15 - 30%	Sand with gravel
Trace	0 - 15%	Sand with trace
		gravel

The presence of cobbles and boulders shall be specifically noted by beginning the description with 'Mix of Soil and Cobbles/Boulders' with the word order indicating the dominant first and the proportion of cobbles and boulders described together.

Soil Descriptions

Cohesive Soils

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	F	25 - 50
Stiff	St	50 - 100
Very stiff	VSt	100 - 200
Hard	Н	>200
Friable	Fr	-

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	Density Index (%)
Very loose	VL	<15
Loose	L	15-35
Medium dense	MD	35-65
Dense	D	65-85
Very dense	VD	>85

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Extremely weathered material formed from in-situ weathering of geological formations. Has soil strength but retains the structure or fabric of the parent rock;
- Alluvial soil deposited by streams and rivers;

- Estuarine soil deposited in coastal estuaries;
- Marine soil deposited in a marine environment;
- Lacustrine soil deposited in freshwater lakes;
- Aeolian soil carried and deposited by wind;
- Colluvial soil soil and rock debris transported down slopes by gravity;
- Topsoil mantle of surface soil, often with high levels of organic material.
- Fill any material which has been moved by man.

Moisture Condition – Coarse Grained Soils For coarse grained soils the moisture condition

should be described by appearance and feel using the following terms:

- Dry (D) Non-cohesive and free-running.
- Moist (M) Soil feels cool, darkened in colour.

Soil tends to stick together. Sand forms weak ball but breaks easily.

Wet (W) Soil feels cool, darkened in colour.

Soil tends to stick together, free water forms when handling.

Moisture Condition – Fine Grained Soils

For fine grained soils the assessment of moisture content is relative to their plastic limit or liquid limit, as follows:

- 'Moist, dry of plastic limit' or 'w <PL' (i.e. hard and friable or powdery).
- 'Moist, near plastic limit' or 'w ≈ PL (i.e. soil can be moulded at moisture content approximately equal to the plastic limit).
- 'Moist, wet of plastic limit' or 'w >PL' (i.e. soils usually weakened and free water forms on the hands when handling).
- 'Wet' or 'w ≈LL' (i.e. near the liquid limit).
- 'Wet' or 'w >LL' (i.e. wet of the liquid limit).

Rock Descriptions

Rock Strength

Rock strength is defined by the Unconfined Compressive Strength and it refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects.

The Point Load Strength Index $Is_{(50)}$ is commonly used to provide an estimate of the rock strength and site specific correlations should be developed to allow UCS values to be determined. The point load strength test procedure is described by Australian Standard AS4133.4.1-2007. The terms used to describe rock strength are as follows:

Strength Term	Abbreviation	Unconfined Compressive Strength MPa	Point Load Index * Is ₍₅₀₎ MPa
Very low	VL	0.6 - 2	0.03 - 0.1
Low	L	2 - 6	0.1 - 0.3
Medium	М	6 - 20	0.3 - 1.0
High	Н	20 - 60	1 - 3
Very high	VH	60 - 200	3 - 10
Extremely high	EH	>200	>10

* Assumes a ratio of 20:1 for UCS to $Is_{(50)}$. It should be noted that the UCS to $Is_{(50)}$ ratio varies significantly for different rock types and specific ratios should be determined for each site.

Degree of Weathering

The degree of weathering of rock is classified as follows:

Term	Abbreviation	Description
Residual Soil	RS	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.
Extremely weathered	XW	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible
Highly weathered	HW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.
Moderately weathered	MW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.
Slightly weathered	SW	Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.
Fresh	FR	No signs of decomposition or staining.
Note: If HW and MW cannot be differentiated use DW (see below)		
Distinctly weathered	DW	Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching or may be decreased due to deposition of weathered products in pores.

Rock Descriptions

Degree of Fracturing

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured	Core lengths of 20-40 mm with occasional fragments
Fractured	Core lengths of 30-100 mm with occasional shorter and longer sections
Slightly Fractured	Core lengths of 300 mm or longer with occasional sections of 100-300 mm
Unbroken	Core contains very few fractures

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

RQD % = <u>cumulative length of 'sound' core sections ≥ 100 mm long</u> total drilled length of section being assessed

where 'sound' rock is assessed to be rock of low strength or stronger. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

Term	Separation of Stratification Planes	
Thinly laminated	< 6 mm	
Laminated	6 mm to 20 mm	
Very thinly bedded	20 mm to 60 mm	
Thinly bedded	60 mm to 0.2 m	
Medium bedded	0.2 m to 0.6 m	
Thickly bedded	0.6 m to 2 m	
Very thickly bedded	> 2 m	

Symbols & Abbreviations

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

С	Core drilling
R	Rotary drilling
SFA	Spiral flight augers
NMLC	Diamond core - 52 mm dia
NQ	Diamond core - 47 mm dia
HQ	Diamond core - 63 mm dia
PQ	Diamond core - 81 mm dia

Water

\triangleright	Water seep
\bigtriangledown	Water level

Sampling and Testing

- A Auger sample
- B Bulk sample
- D Disturbed sample
- E Environmental sample
- Undisturbed tube sample (50mm)
- W Water sample
- pp Pocket penetrometer (kPa)
- PID Photo ionisation detector
- PL Point load strength Is(50) MPa
- S Standard Penetration Test V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

В	Bedding plane
Cs	Clay seam
Cv	Cleavage
Cz	Crushed zone
Ds	Decomposed seam
F	Fault
J	Joint
Lam	Lamination
Pt	Parting
Sz	Sheared Zone
V	Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

h horizontal

21

- v vertical
- sh sub-horizontal
- sv sub-vertical

Coating or Infilling Term

cln	clean
со	coating
he	healed
inf	infilled
stn	stained
ti	tight
vn	veneer

Coating Descriptor

ca	calcite
cbs	carbonaceous
cly	clay
fe	iron oxide
mn	manganese
slt	silty

Shape

cu	curved
ir	irregular
pl	planar
st	stepped
un	undulating

Roughness

ро	polished
ro	rough
sl	slickensided
sm	smooth
vr	very rough

Other

fg	fragmented
bnd	band
qtz	quartz

Symbols & Abbreviations

Graphic Symbols for Soil and Rock

General

0	

Asphalt Road base

Concrete

Filling

Soils

Topsoil

Peat Clay

Silty clay

Sandy clay

Gravelly clay

Shaly clay

Silt

Clayey silt

Sandy silt

Sand

Clayey sand

Silty sand

Gravel

Sandy gravel

Talus

Sedimentary Rocks

Limestone

·____.

Metamorphic Rocks

 >
 >
 >

 >
 >
 >
 >

 +
 +
 +
 +
 +

 ·
 ·
 ·
 ·
 ·

 ·
 ·
 ·
 ·
 ·

Slate, phyllite, schist

Quartzite

Gneiss

Igneous Rocks

Granite

Dolerite, basalt, andesite

Dacite, epidote

Tuff, breccia

Porphyry

New South Wales Land and Housing Corporation SURFACE LEVEL: 24.3 AHD EASTING: 312644.4 **NORTHING:** 6249054.9

DIP/AZIMUTH: 90°/--

BORE No: BH01 PROJECT No: 86819.01 DATE: 17/12/2019 SHEET 1 OF 1

					DIP/AZIMUTH: 90°/					SHEET 1 OF 1	
			Description	<u>.0</u>		Sam	pling &	& In Situ Testing		Well	
RL	Deptł (m)	h	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details	
H	0.0	05 -	ASPHALTIC CONCRETE			0.05	05				
-).2-	FILL/Gravelly SAND: fine to coarse, grey-brown, fine to medium igneous gravel, trace clay, dry (roadbase)		E	0.15		PID< 1 ppm			
24			FILL/Silty CLAY CI-CI: low to medium plasticity, red-brown, w <pl< td=""><td></td><td>E*</td><td>0.3 0.5</td><td></td><td>PID< 1 ppm</td><td></td><td>-</td></pl<>		E*	0.3 0.5		PID< 1 ppm		-	
-	- U -).6 -	CLAY CI-CH: medium to high plasticity, red-brown, with silt, w <pl, residual<="" td=""><td></td><td></td><td>0.8</td><td></td><td></td><td></td><td>-</td></pl,>			0.8				-	
-	- 1 -				E	1.0		PID< 1 ppm		-1	
23			1.2m: grading to grey mottled red-brown		E	1.3		PID< 1 ppm		-	
-	· I	1.5 -	Bore discontinued at 1.5m Target depth reached.			-1.5-				-	
	-2									-2	
22										-	
										-	
	- 3 -									-3	
21										-	
-											
-	- 4									-4	
20										-	
										-	

DRILLER: Terratest RIG: Geoprobe (Truck Mounted) TYPE OF BORING: Solid flight auger (TC bit)

CLIENT:

PROJECT:

Villawood, Kamira Court, DSI

LOCATION: Kamira Court, Villawood

LOGGED: JJH

CASING: Uncased

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Location coordinates are in MGA94 Zone 56. * Blind duplicate BD1/20191217 taken at 0.15-0.3m

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level A Auger sample B Bulk sample BLK Block sample G P U, W Douglas Partners (Core drilling Disturbed sample Environmental sample CDE ₽ Geotechnics | Environment | Groundwater

New South Wales Land and Housing Corporation SURFACE LEVEL: 23.7 AHD EASTING: 312676.2 **NORTHING:** 6249037.8

DIP/AZIMUTH: 90°/--

BORE No: BH02 PROJECT No: 86819.01 DATE: 17/12/2019 SHEET 1 OF 1

				DIF	'/AZII	MUTH	H: 90°/		SHEET 1 OF 1
		Description .일		Sampling & In Situ			& In Situ Testing		Well
RL	Depth (m)	of e Strata 0	Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
	0.05	- ASPHALTIC CONCRETE	\sim	-	0.05	0,		+	
-	0.15	FILL/Gravelly SAND: fine to coarse, grey-brown, fine to medium igneous gravel, trace clay, dry (roadbase)	\mathfrak{A}	E	0.15		PID< 1 ppm		
	- -	FILL/Silty CLAY: low to medium plasticity, red-brown mottled grey, with fine gravels, w <pl< td=""><td>\otimes</td><td>E</td><td>0.3 0.5</td><td></td><td>PID< 1 ppm</td><td></td><td></td></pl<>	\otimes	E	0.3 0.5		PID< 1 ppm		
23	- 0.6	CLAY CL-CI: low to medium plasticity, red-brown, trace fine gravels, w <pl, residual<="" td=""><td>\mathcal{I}</td><td></td><td>0.8</td><td></td><td></td><td></td><td></td></pl,>	\mathcal{I}		0.8				
-	- 1	0.80m: grading to grey mottled red-brown	$\left \right\rangle$	E	1.0		PID< 1 ppm		- 1
	- -				1.3				-
	- 1.5			Е	-1.5-		PID< 1 ppm		-
22	-	Bore discontinued at 1.5m Target depth reached.							-
-	-								-
-	-2								-2
	_								-
-									-
21									-
-	- - 3								-3
-	-								
-									-
20									-
-	-								
-	+ - -								
-	-								
-	-								
-19	-								
	_								

DRILLER: Terratest **RIG:** Geoprobe (Truck Mounted) TYPE OF BORING: Solid flight auger (TC bit) WATER OBSERVATIONS: No free groundwater observed **REMARKS:** Location coordinates are in MGA94 Zone 56.

CLIENT:

PROJECT:

Villawood, Kamira Court, DSI

LOCATION: Kamira Court, Villawood

LOGGED: JJH

CASING: Uncased

SAMPLING & IN SITU TESTING LEGEND

LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level A Auger sample B Bulk sample BLK Block sample G P U_x W Core drilling Disturbed sample Environmental sample CDE ₽

New South Wales Land and Housing Corporation SURFACE LEVEL: 23.4 AHD CLIENT: PROJECT: Villawood, Kamira Court, DSI EASTING: 312706.0 LOCATION: Kamira Court, Villawood **NORTHING:** 6249018.0

DIP/AZIMUTH: 90°/--

BORE No: BH03 PROJECT No: 86819.01 DATE: 17/12/2019 SHEET 1 OF 1

							H: 90 /		SHEET I OF I
	D ''	Description	, ji		San		& In Situ Testing	ř	Well
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
\vdash	0.0					0			
	0.0	FILL/Gravelly SAND GW: fine to coarse, grey-brown, fine to medium igneous gravel, trace clay, moist (roadbase)	\otimes		0.3				-
23	· 0.:	FILL/Sandy CLAY: low plasticity, brown, fine to medium sand, with fine to medium igneous gravels, w <pl< td=""><td>XX</td><td>E</td><td>0.3</td><td></td><td>PID< 1 ppm</td><td></td><td></td></pl<>	XX	E	0.3		PID< 1 ppm		
		CLAY CL-CI: low to medium plasticity, red-brown, trace fine gravel, w <pl, residual<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></pl,>							-
				E	0.8		PID< 1 ppm		
	- 1				1.0				-1
22		1.2m: grading to grey mottled red-brown		E	1.3		PID< 1 ppm		-
					1.5				
				E	1.8		PID< 1 ppm		-
+ +	-2 2.0	Bore discontinued at 2.0m			-2.0-				2
		Target depth reached.							-
5									
									-
									-
+ +									-
	- 3								-3
+ +									-
+ +									-
-2-									-
									-
+ +									-
	-4								4
-6									
$\left \right $									
Ш		1							

RIG: Geoprobe (Truck Mounted) **DRILLER:** Terratest TYPE OF BORING: Solid flight auger (TC bit) WATER OBSERVATIONS: No free groundwater observed

LOGGED: JJH

CASING: Uncased

REMARKS: Location coordinates are in MGA94 Zone 56. SAMPLING & IN SITU TESTING LEGEND

CDE

New South Wales Land and Housing Corporation SURFACE LEVEL: 22.0 AHD Villawood, Kamira Court, DSI **EASTING:** 312743.9 LOCATION: Kamira Court, Villawood

NORTHING: 6249061.4 DIP/AZIMUTH: 90°/--

BORE No: MW01 **PROJECT No:** 86819.01 DATE: 17/12/2019 SHEET 1 OF 1

						NOT	H: 90°/		SHEET 1 OF 1	
\square		Description	ic		Sam		& In Situ Testing	-	Well	
)epth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details	I
	0.6	FILL/Gravelly CLAY: low to medium plasticty, red-brown, fine to medium gravel, with silt, trace asbestos fibre cement sheet fragment, w <pl< td=""><td>X</td><td><u>Е*</u> Е</td><td>0.0 0.2 0.3 0.5</td><td></td><td>PID< 1 ppm PID< 1 ppm</td><td></td><td>Gatic cover</td><td>4:4:4:Z</td></pl<>	X	<u>Е*</u> Е	0.0 0.2 0.3 0.5		PID< 1 ppm PID< 1 ppm		Gatic cover	4:4:4:Z
		CLAY CI-CH: medium to high plasticity, red-brown, with silt, w <pl, residual<="" td=""><td></td><td>E</td><td>0.8 1.0 1.3 1.5</td><td></td><td>PID< 1 ppm PID< 1 ppm</td><td></td><td>-1</td><td></td></pl,>		E	0.8 1.0 1.3 1.5		PID< 1 ppm PID< 1 ppm		-1	
-R - 2	1.9 -	CLAY CL-CI: low to medium plasticity, brown-grey, with silt, w <pl, residual<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>2</td><td>н</td></pl,>							2	н
									Bentonite	
- 									4	20 - <u>50</u>
- 									-5	000000
	6.1 -	SHALE: grey, apparently low strength, moist, Bringelly Shale							6	20000000000000000000000000000000000000
- ₽ - 7									7 Gravel -	
4-8									8	0000000
9		Below 9.0m: becoming moist to wet							9	20,20,20,20,20,20,20,20,20,20,20,20,20,2
-≌ - 1(0 10.5 -							Ţ	10 End Cap	000000
		Bore discontinued at 10.5m Target depth reached.							-11	
	2								-12	
- - - - - - - - - - - - - - - - - - -	3								13	
14 - ∞ - 14	4								14	

RIG: Geoprobe (Truck Mounted) **DRILLER:** Terratest **TYPE OF BORING:** Solid flight auger (TC bit)

CLIENT:

PROJECT:

LOGGED: JJH

CASING: Uncased

WATER OBSERVATIONS: Free groundwater observed during augering at 10.0m **REMARKS:** Location coordinates are in MGA94 Zone 56.

SAM	PLIN	G & IN SITU TESTING	LEG	END							
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)				-			
B Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)					-	Partne	NO
BLK Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test ls(50) (MPa)					5 /	Parine	
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)							
D Disturbed sample	⊳	Water seep	S	Standard penetration test		· /	O to a to a los	1 -			
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics	I Env	/iror	nment Ground	iwater
					-						

New South Wales Land and Housing Corporation **SURFACE LEVEL:** 23.4 AHD Villawood, Kamira Court, DSI **EASTING:** 312724.6

EASTING: 312724.6 NORTHING: 6248977.2 DIP/AZIMUTH: 90°/-- BORE No: MW02 PROJECT No: 86819.01 DATE: 18/12/2019 SHEET 1 OF 1

					DIF	/AZI		H: 90°/		SHEET 1 OF 1		
			Description			Sam		& In Situ Testing	<u>ب</u>	Well		
RL	D(epth m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details		
23		0.05	FILL/Silty CLAY: medium to high plasticity, brown, with fine to medium gravel, trace ceramic tile, w <pl< td=""><td></td><td>E*</td><td>0.0 0.2 0.3</td><td></td><td>PID < 1 ppm PID < 1 ppm</td><td></td><td>Flush gatic cover</td><td><u></u></td></pl<>		E*	0.0 0.2 0.3		PID < 1 ppm PID < 1 ppm		Flush gatic cover	<u></u>	
22		0.65	CLAY CL-CI: low to medium plasticity, red-brown mottled grey, trace fine to medium gravel, w <pl, residual<="" td=""><td></td><td>E</td><td>0.5 0.8 1.0 1.3 1.5</td><td></td><td>PID < 1 ppm PID < 1 ppm</td><td></td><td>1</td><td></td></pl,>		E	0.5 0.8 1.0 1.3 1.5		PID < 1 ppm PID < 1 ppm		1		
21	-2	0.0	Below 2.0m: grading to grey mottled red-brown							-2 Bentonite		
20	-3	2.8	CLAY CL-CI: low to medium plasticity, brown, with silt and fine to medium gravels, moist, residual (possibly extremely low strength shale)							-3	Π	
19	-4	5.0								-4	11111 11111	
18	E	0.0	SHALE: grey-brown, apparently low strength, moist, Bringelly Shale							6	00000000000000000000000000000000000000	
12	- 7									7	11111111111111111111111111111111111111	
15	- 8									Gravel —	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	
14	9									9	00000000000000000000000000000000000000	
13	10	10.5								- 10 - End Cap	00000 111111	
12	- 11	10.5	Bore discontinued at 10.5m Target depth reached.							-11		
	12									12		
10	13									13		
6	14									- 14		

RIG: Geoprobe (Truck Mounted) DRILLER: Terratest

CLIENT:

PROJECT:

LOCATION: Kamira Court, Villawood

LOGGED: JJH

CASING: Uncased

TYPE OF BORING: Solid flight auger (TC bit) WATER OBSERVATIONS: No free groundwater observed

REMARKS: Location coordinates are in MGA94 Zone 56. * Blind duplicate BD2/20191217 taken at 0-0.2m

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 Ploto ionisation detector (ppm)

 B
 Buik sample
 Piston sample
 Ploto ionisation detector (ppm)

 BLK
 Block sample
 U
 Tube sample (x mm dia.)

 C Core drilling
 W
 Water sample
 Ploto ionisation detector (kmPa)

 D
 Disturbed sample
 P
 Ploto ionication detector (kmPa)

 D
 Disturbed sample
 P
 Vater seep

 E
 Environmental sample
 V
 Stear vane (kPa)

CLIENT:New South Wales Land and Housing Corporation SURFACE LEVEL: 24.2 AHDPROJECT:Villawood, Kamira Court, DSIEASTING: 312624.9

LOCATION:

Kamira Court, Villawood

EASTING: 312624.9 NORTHING: 6249088.9 DIP/AZIMUTH: 90°/--

BORE No: MW03 PROJECT No: 86819.01 DATE: 18/12/2019 SHEET 1 OF 1

	_		Description	hic		Sam		& In Situ Testing	2	Well		
RL	Depth (m)		of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details		
23 24	-1		FILL/CLAY: low plasticity, pale brown, with silt and fine to coarse gravel, trace concrete fragments and sand, w <pl< td=""><td></td><td>E E E</td><td>0.0 0.2 0.3 0.5 0.8 1.0 1.3 1.5</td><td>0)</td><td>PID< 1 ppm PID< 1 ppm PID< 1 ppm PID< 1 ppm</td><td></td><td>Flush gatic cover</td></pl<>		E E E	0.0 0.2 0.3 0.5 0.8 1.0 1.3 1.5	0)	PID< 1 ppm PID< 1 ppm PID< 1 ppm PID< 1 ppm		Flush gatic cover		
21 22	-2 -3					2.3 2.5 2.8 3.0		PID< 1 ppm PID< 1 ppm		-2 -3 Bentonite		
. 19	-4	5.0 -	SHALE, grey, apparently low strength, moist, Bringelly Shale		<u> </u>	4.3 4.5		PID< 1 ppm		-4 -5		
15	-7-7-8-9-9-					5.8 6.0		PID< 1 ppm		6 6 6 6 6 6 6 6 6 6 6 6 6 6		
13	10	10.5 -	Bore discontinued at 10.5m Target depth reached.									
11 12	12									-12 -13		
10	- 14									- 14		

RIG: Geoprobe (Truck Mounted) DRILLER: Terratest

LOGGED: JJH

CASING: Uncased

TYPE OF BORING: Solid flight auger (TC bit) WATER OBSERVATIONS: No free groundwater observed

REMARKS: Location coordinates are in MGA94 Zone 56. * Blind duplicate BD1/20191218 taken at 0-0.2m

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 Gas sample
 Piston sample

 B
 Buik sample
 Piston sample
 Piston sample

 C
 Core drilling
 V
 Water seep

 D
 Disturbed sample
 P
 Piston sample

 E
 Environmental sample
 V
 Shardard penetration test

TEST PIT LOG

CLIENT: PROJECT:

New South Wales Land and Housing Corporation SURFACE LEVEL: 25.2 AHD Villawood, Kamira Court, DSI **EASTING:** 312653.1 LOCATION: Kamira Court, Villawood NORTHING: 6248983.8

PIT No: TP09 **PROJECT No: 86819.01** DATE: 26/11/2019 SHEET 1 OF 1

Γ		Description	ic		Sampling & In Situ Testing			-	Dumamia Danatromatar Taat			
RL	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per mm)			
		Strata		Т	0.0	Sa	PID< 1 ppm		5	10	15	20
25	-	FILL/Silty CLAY: low plasticity, brown, trace sand and rootlets, w <pl <math="" display="inline">% \mathcal{A}_{\mathrm{S}}</pl>		E*								
-	- 0.3	CLAY CI-CH: medium to high pasticity red-brown mottled	\searrow		0.3		PID< 1 ppm					
Ì	-	CLAY CI-CH: medium to high pasticity, red-brown mottled grey, with silt, trace rootlets, w <pl, residual<="" td=""><td></td><td>E</td><td>0.5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>		E	0.5							
ł	-											
ļ	-											
ŀ	-											
ļ	-1								-1			
24	-	Below 1.20m: grading to grey mottled red-orange										
	- - 1.4 -											
ł	-	Pit discontinued at 1.4m Target depth reached.								:	:	
-	-								-	:	:	
ł	-										:	
ŀ	-2								-2		:	
- 23	-										:	
-	-											
ļ	-											
ł	-											
ļ	-									:	:	
ł	-								-3	÷	:	
ŀ	-3								-3	÷	:	
22	-									÷	:	
-	-								-		:	
ł	-									:	:	
ł	-									÷	:	
ţ	-										:	
ł	-4								-4	:	:	
- 12	-									:		
-	-											
ļ	-								[
ł	-											
ŀ	-								[
ł	-											

RIG: 5 tonne Excavator (600 mm bucket)

A B BLK C D E

LOGGED: JJH

SURVEY DATUM: MGA94 Zone 56

□ Sand Penetrometer AS1289.6.3.3 □ Cone Penetrometer AS1289.6.3.2

WATER OBSERVATIONS: No free groundwater observed

REMARKS: * Blind duplicate BD1/20191126 taken at 0-0.3m

S	AMPLING	G & IN SITU TESTING	LEG	END					
Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)					
Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)					rtners
K Block sample	U,	Tube sample (x mm dia.)	PL(E) Point load diametral test ls(50) (MPa)		nin	36		There
Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		UUU	143	Га	
Disturbed sample	⊳	Water seep	S	Standard penetration test					
Environmental samp	ole 📱	Water level	V	Shear vane (kPa)	Geo	technics	I Enviro	onment	Groundwater
					 				0.00.000
TEST PIT LOG

CLIENT: PROJECT:

New South Wales Land and Housing Corporation SURFACE LEVEL: 24.7 AHD **EASTING:** 312669.9 Villawood, Kamira Court, DSI LOCATION: Kamira Court, Villawood NORTHING: 6248982.2

PIT No: TP10 PROJECT No: 86819.01 DATE: 26/11/2019 SHEET 1 OF 1

	Dauth	Description	ic T		Sam		& In Situ Testing	2		nomic Por	otromotor	Tost
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Uyi t		netrometer per mm) ¹⁵	20
-	-	FILL/Silty CLAY: low plasticity, grey-brown, trace sand and rootlets, w <pl< td=""><td></td><td>E</td><td>0.0</td><td><u></u></td><td>PID< 1 ppm</td><td></td><td>-</td><td></td><td></td><td></td></pl<>		E	0.0	<u></u>	PID< 1 ppm		-			
-	- 0.3 - - -	CLAY CI-CH: medium to high pasticity, red-brown mottled grey, trace rootlets and fine gravel, w <pl, residual<="" td=""><td></td><td>E</td><td>0.3 0.5</td><td></td><td>PID< 1 ppm</td><td></td><td>-</td><td></td><td></td><td></td></pl,>		E	0.3 0.5		PID< 1 ppm		-			
24	- - - - 1								- - - -1			
-	-	Below 1.1m: grading to grey mottled red-orange							-			
-	- 1.4 -	Pit discontinued at 1.4m Target depth reached.							-			
23	-								-			
-	-2								-2			
-	-								-			
-	-								-			
22	-								-			
-	- - 3								- -3			
-	-								-			
-	-								-			
21	-								-			
-	- 4								- 4			
-	-								-			
-	-								-			
20	-								-			
-	-								-			

RIG: 5 tonne Excavator (600 mm bucket)

LOGGED: JJH

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level G P U_x W ₽

□ Sand Penetrometer AS1289.6.3.3 □ Cone Penetrometer AS1289.6.3.2

TEST PIT LOG

CLIENT: PROJECT:

New South Wales Land and Housing Corporation SURFACE LEVEL: 22.6 AHD Villawood, Kamira Court, DSI EASTING: 312680.5 LOCATION: Kamira Court, Villawood NORTHING: 6249106.7

PIT No: TPA **PROJECT No: 86819.01** DATE: 26/11/2019 SHEET 1 OF 1

			Description	. <u>0</u>		Sam	ipling &	& In Situ Testing					
R		Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynar	nic Pene (blows p	etromete per mm)	er Test
		``	Strata	U	Ту	De	San	Comments	_	5	10	15	20
-	-		FILL/CLAY CL-CI: low to medium pasticity, grey-brown, with silt, trace gravel, rootlets, brick, ceramic tile and concrete fragments, w <pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td></pl<>							-			
	1									- 1			
21	-		Below 1.6m: grading to brown										
	-2 - - - -									-2			
-	- - -3 -									-3			
	- 4	4.0 - 4.1 -	FILL/CLAY CI-CH: medium to high plasticity, grey mottled ∼orange-red, w <pl (possibly="" residual)<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl>										
		- 7 .1	Orange-red, w <pl (possibly="" residual)<br="">Pit discontinued at 4.1m Target depth reached.</pl>										

RIG: 5 tonne Excavator (600 mm bucket)

LOGGED: JJH

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

	SAMP	LINC	3 & IN SITU TESTING	LEGE	END
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)
	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)
	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
	Disturbed sample	⊳	Water seep	S	Standard penetration test
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)

□ Sand Penetrometer AS1289.6.3.3 □ Cone Penetrometer AS1289.6.3.2

TEST PIT LOG

CLIENT: PROJECT:

New South Wales Land and Housing Corporation SURFACE LEVEL: 23.8 AHD Villawood, Kamira Court, DSI **EASTING:** 312709.5 LOCATION: Kamira Court, Villawood NORTHING: 6248994.5

PIT No: TPB PROJECT No: 86819.01 DATE: 26/11/2019 SHEET 1 OF 1

Γ		Description	U		Sam	pling 8	& In Situ Testing					
님	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynar	nic Pene (blows p	etromete per mm)	r Test
		Strata	0	ч	De	San	Comments	_	5	10	15	20 :
	- 1	FILL/CLAY CL-CI: low to medium pasticity, grey-brown mottled red-orange, with silt, trace gravel, rootlets, wood, brick and ceramic tile fragments, w <pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-1</td><td></td><td></td><td></td></pl<>							-1			
-22		CLAY CI-CH: medium to high plasticity, grey mottled red-orange, with silt, w <pl, residual<="" td=""><td>V / I</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>	V / I									
	- 3 3 	Pit discontinued at 1.8m Target depth reached.						-	-2			
-19-	-											
	L											_:

RIG: 5 tonne Excavator (600 mm bucket)

LOGGED: JJH

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

	SAMP	LINC	& IN SITU TESTING	LEGE	ND	
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
В	Bulk sample	Р	Piston sample		Point load axial test Is(50) (MPa)	
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test ls(50) (MPa)	
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
	Disturbed sample	⊳	Water seep	S	Standard penetration test	
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	
						-

□ Sand Penetrometer AS1289.6.3.3 □ Cone Penetrometer AS1289.6.3.2

Appendix F

Groundwater Field Sheets

Douglas Partners Geotechnics | Environment | Groundwater 1

Groundwater Field Sheet Project and Bore Installation Details

Bore / Standpipe ID: Project Name: Project Number: Site Location: Bore GPS Co-ord:

onnone i Groundwator		
	Bore Volume = casing volume + filter pack	
ails	volume = $\pi h_1 d_2^2 / 4 + n(\pi h_1 d_1^2 / 4 - \pi h_2 d_2^2 / 4)$	
MWI	Where: $\pi = 3.14$	
Mawood	n = porotity (0.3 for most filter pack	
X6819. a	material)	•
	$h_i = height of water column$	•
	d _i = diameter of annulus	
	$h_1 = $ length of filter pack	
17.11.16	$d_2 = diameter of casing$	

Bore GPS Co-ord:		1			$h_2 = \text{length of filt}$						
Installation Date:	17.12	16			$d_2 = diameter of c$	-					
GW Level (during drilling):	-	m bgl		Boi	re Vol Normally	/: 7.2*h					
Well Depth:		m bgl									
Screened Interval:		m bgl									
Contaminants/Comments:	-										
Bore Development Details					2						
Date/Time:	18.17	19									
Purged By:	TT L										
GW Level (pre-purge):	Folt	m bgl									
GW Level (post-purge):	10.5	m bal									
PSH observed:	Yes / No (visual). Thickr	ess if observed	1:						
Observed Well Depth:	(6.5	m bgl	fielder ji fineta								
Estimated Bore Volume:		1									
Total Volume Purged:	(target: no drill	 I mud_min 3 v	vell vol. or dry)	DRY							
Equipment:	WQN	1. int M	0	21-1							
Micropurge and Sampling De		4 11 11	ere								
Date/Time:	2612										
Sampled By:	14.1.0	0									
Weather Conditions:	222	scest									
	-2000										
GW Level (pre-purge): GW Level (post sample):	5.	m bgl									
PSH observed:	Yes / No (m bgl	visual). Thickr	and if chaon (or	4.						
Observed Well Depth:	res / (No (visual). Thickr	less II observed	1.						
Estimated Bore Volume:	10.5	m bgl									
	210										
Total Volume Purged:	14	L									
Equipment:	War	1, int. ~	eter, per	purp							
		Water Qualit	y Parameters								
				-11	Truckiditer	Redox (mV)					
Time / Volume	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	pН	Turbidity	rtodox (m+)					
Time / Volume Stabilisation Criteria (3 readings)	Temp (°C) 0.1 ° C	DO (mg/L) +/- 0.3 mg/L	EC (μS or mS/cm) +/- 3%	рн +/- 0.1	+/- 10%	+/- 10 mV					
Stabilisation Criteria (3 readings)	0.1 ° C			+/- 0.1							
Stabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L	+/- 3%	+/- 0.1 6. 11	+/- 10%	+/- 10 mV					
Stabilisation Criteria (3 readings)	0.1°C 72.8 92.7	+/- 0.3 mg/L 3-78 2-50	+/- 3%	+/- 0.1 6. 11 6. 04	+/- 10%	+/- 10 mV					
Stabilisation Criteria (3 readings)	0.1°C 72.8 92.7 22.3	+/- 0.3 mg/L	+/- 3% 3.9 2.) - 8. 2	+/- 0.1 6.11 8.04 3.77	+/- 10%	+/- 10 mV // 5 99					
Stabilisation Criteria (3 readings)	0.1°C 72.8 12.7 22.3 22.3	+/- 0.3 mg/L 5.78 2-36 1-61 /.26	+/- 3% 	+/-0.1 6.11 5.04 5.77 5.68	+/- 10% <i>C 885</i> <i>2 2 0 6</i> <i>15 7 1</i> <i>12 7 1</i>	+/- 10 mV					
Stabilisation Criteria (3 readings)	0.1°C 72.8 12.7 22.3 22.3 22.2 22.2	+/- 0.3 mg/L 5.78 2-30 /-61 /.26 /r 03	+/- 3% 	+/- 0.1 6.11 8.04 3.77	+/- 10% 2 206 1571 1271 1271 1151	+/- 10 mV // 5- 99 86 75 72					
Stabilisation Criteria (3 readings)	0.1°C 72.8 12.7 22.3 22.3	+/- 0.3 mg/L 5.78 2-30 /-61 /.26 /.03 0.91	+/- 3% 5.9 2.) 8. 2 2.) 8. 2 2. 	+/-0.1 6.11 8.04 5.77 5.68 5.55 5.55	+/- 10% 2206 1571 1271 1271 151 1650	+/- 10 mV // 5- 99 86 75 72 72					
Stabilisation Criteria (3 readings)	0.1°C 72.8 12.7 22.3 22.3 22.2 22.2 22.2	+/- 0.3 mg/L 5.78 2-30 /-61 /.26 /r 03	+/- 3% 	+/-0.1 6.11 8.04 5.77 7.68 5.55	+/- 10% 2 206 1571 1271 1271 1151	+/- 10 mV // 5- 99 86 75 72					
Stabilisation Criteria (3 readings)	0.1°C 72.8 12.7 22.3 22.3 22.2 22.2 22.2	+/- 0.3 mg/L 5.78 2-30 /-61 /.26 /.03 0.91	+/- 3% 5.9 2.) 8. 2 2.) 8. 2 2. 	+/-0.1 6.11 8.04 5.77 5.68 5.55 5.55	+/- 10% 2206 1571 1271 1271 151 1650	+/- 10 mV // 5- 99 86 75 72 72					
Stabilisation Criteria (3 readings)	0.1°C 72.8 12.7 22.3 22.3 22.2 22.2 22.2	+/- 0.3 mg/L 5.78 2-30 /-61 /.26 /.03 0.91	+/- 3% 5.9 2/2.) 8. 2 2/2.) 8. 2 2/2.) 2/2. 2/	+/-0.1 6.11 8.04 5.77 5.68 5.55 5.55	+/- 10% 2206 1571 1271 1271 151 1650	+/- 10 mV // 5- 99 86 75 72 72					
Stabilisation Criteria (3 readings) 0900 0902 0902 0903 0906	0.1°C 72.8 92.7 22.3 22.2 22.2 22.2 22.2	+/- 0.3 mg/L 5.78 2-36 1-61 1.26 1.03 0.91 0.86	+/-3% - 3.9 - 4.) - 8. 2 - 7. 1 6.5 6.2 - 6.1	+/-0.1 6.11 8.04 5.77 5.68 5.55 5.55	+/- 10% 2206 1571 1271 1271 151 1650	+/- 10 mV // 5- 99 86 75 72 72					
Stabilisation Criteria (3 readings)	0.1°C 72.8 12.7 22.3 22.3 22.2 22.2 22.2	+/- 0.3 mg/L 5.78 2-30 /-61 /.26 /.03 0.91	+/- 3% 5.9 2/2.) 8. 2 2/2.) 8. 2 2/2.) 2/2. 2/	+/-0.1 6.11 8.04 5.77 5.68 5.55 5.55	+/- 10% 2206 1571 1271 1271 151 1650	+/- 10 mV // 5- 99 86 75 72 72					
Stabilisation Criteria (3 readings) 0900 0902 0902 0903 0906	0.1°C 72.8 92.7 22.3 22.2 22.2 22.2 22.2	+/- 0.3 mg/L 5.78 2-30 1.61 1.26 1.03 0.91 0.86 SPC	+/- 3% - 5.9 - 2. 8. 2 7. 1 6.5 6.2 6.1 TDS	+/-0.1 6.11 8.04 5.77 5.68 5.55 5.55	+/- 10% 2206 1571 1221 1151 1151	+/- 10 mV // 5- 99 86 75 72 72					
Stabilisation Criteria (3 readings)	0.1°C 72.8 12.7 22.3 22.7 22.7 22.7 22.7 22.7	+/- 0.3 mg/L 5.78 2-36 7-61 1.26 7.03 0.91 0.96 SPC Sample	+/- 3% - 3.9 - 4.) - 8. 2 - 7. 1 6.5 6. 2 - 6. 1 	+/-0.1 6.11 8.04 5.77 5.68 5.55 5.55	+/- 10% 2206 1571 1221 1151 1151	+/- 10 mV // 5- 99 86 75 72 72					
Stabilisation Criteria (3 readings)	0.1°C 72.8 92.7 22.3 22.2 22.2 22.2 22.2	+/- 0.3 mg/L 5.78 2-30 1.61 1.26 1.03 0.91 0.86 SPC	+/- 3% - 5.9 - 2. 8. 2 7. 1 6.5 6.2 6.1 TDS	+/-0.1 6.11 8.04 5.77 5.68 5.55 5.55	+/- 10% 2206 1571 1221 1151 1151	+/- 10 mV // 5- 99 86 75 72 72 72					
Stabilisation Criteria (3 readings)	0.1°C 72.8 12.7 22.3 22.7 22.7 22.7 22.7 22.7	+/- 0.3 mg/L 5.78 2-36 7-61 1.26 7.03 0.91 0.96 SPC Sample	+/- 3% - 5.9 - 2. 8. 2 7. 1 6.5 6.2 6.1 TDS	+/-0.1 6.11 8.04 5.77 5.68 5.55 5.55	+/- 10% 2206 1571 1221 1151 1151	+/- 10 mV // 5- 99 86 75 72 72 72					
Stabilisation Criteria (3 readings)	0.1°C 72.8 12.7 22.3 22.7 22.7 22.7 22.7 22.7 22.7	+/- 0.3 mg/L 5.78 2-36 7-61 1.26 7.03 0.91 0.96 SPC Sample	+/- 3% - 5.9 - 2. 8. 2 7. 1 6.5 6.2 6.1 TDS	+/-0.1 6.11 8.04 5.77 5.68 5.55 5.55	+/- 10% 2206 1571 1221 1151 1151	+/- 10 mV // 5- 99 86 75 72 72 72					
Stabilisation Criteria (3 readings)	0.1°C 72.8 92.7 22.3 22.2 22.2 22.2 22.2 22.2 22.2 2	+/- 0.3 mg/L 5.78 2-36 1.61 1.26 1.03 0.91 0.86 SPC SPC Sample m bgl,	+/- 3% - 5.9 - 2. 8. 2 7. 1 6.5 6.2 6.1 TDS	+/-0.1 6.11 8.04 5.77 5.68 5.55 5.55	+/- 10% 2206 1571 1221 1151 1151	+/- 10 mV // 5- 99 86 75 72 72 72					
Stabilisation Criteria (3 readings)	0.1°C 72.8 92.7 22.3 22.2 22.2 22.2 22.2 22.2 22.2 2	+/- 0.3 mg/L 5.78 2-36 7-61 1.26 7.03 0.91 0.96 SPC Sample	+/- 3% - 5.9 - 4.) - 8. 2 - 7. 1 6.5 6. 2 - 6. 1 - 7. - 7	+/-0.1 6.11 8.04 5.77 5.68 5.55 5.55	+/- 10% 2206 1571 1221 1151 1151	+/- 10 mV // 5- 99 86 75 72 72 72					
Stabilisation Criteria (3 readings)	0.1°C 72.8 92.7 22.3 22.2 22.2 22.2 22.2 22.2 22.2 2	+/- 0.3 mg/L 5.78 2-36 1.61 1.26 1.03 0.91 0.86 SPC SPC Sample m bgl,	+/- 3% - 5.9 - 4.) - 8. 2 - 7. 1 6.5 6. 2 - 6. 1 - 7. - 7	+/-0.1 G. 11 G. 04 S. 77 S. 68 S. 55 S. 57 S. 57	+/- 10% 2 815 2 206 1571 1271 1271 1271 1050 780	+/- 10 mV // 5- 99 86 75 72 72 72					
Stabilisation Criteria (3 readings)	0.1°C 72.8 92.7 22.3 22.2 22.2 22.2 22.2 22.2 22.2 2	+/- 0.3 mg/L 5.78 2-36 1.61 1.26 1.03 0.91 0.86 SPC SPC Sample m bgl,	+/- 3% - 5.9 - 4.) - 8. 2 - 7. 1 6.5 6. 2 - 6. 1 - 7. - 7	+/-0.1 G. 11 G. 04 S. 77 S. 68 S. 55 S. 57 S. 57	+/- 10% 2 815 2 206 1571 1271 1271 1271 1050 780	+/- 10 mV // 5- 99 86 75 72 72 72					
Stabilisation Criteria (3 readings)	0.1°C 72.8 92.7 22.3 22.2 22.2 22.2 22.2 22.2 22.2 2	+/- 0.3 mg/L 5.78 2-36 1.61 1.26 1.03 0.91 0.86 SPC SPC Sample m bgl,	+/- 3% - 5.9 - 4.) - 8. 2 - 7. 1 6.5 6. 2 - 6. 1 - 7. - 7	+/-0.1 G. 11 G. 04 S. 77 S. 68 S. 55 S. 57 S. 57	+/- 10% 2 815 2 206 1571 1271 1271 1271 1050 780	+/- 10 mV // 5- 99 86 75 72 72 72					

Douglas Partners Geotechnics | Environment | Groundwater

Groundwater Field Sheet Project and Bore Installation Details

Bore Volume = casing volume + filter pack volume = $\pi h_1 d_2^2 / 4 + n(\pi h_1 d_1^2 / 4 - \pi h_2 d_2^2 / 4)$ Where: $\pi = 3.14$

Details				$= \pi h_1 d_2^{-1}/4 -$	+ $n(\pi h_1 d_1^2/4 - \pi h_2 d_2^2/4)$
MWZ	С.		W	here: $\pi = 3.14$	
VILLAW	909			n = porosity (0.3)	for most filter pack
86879.0	1			material)	4
	1				
19.12	10				
-	m hal		Bo	ore Vol Normall	y: 7.2*h
				•	
	in bgi				
-					
C 1) G					
18.121					
					8 - 2
Yes / No (interface /	visual). Thickn	ess if observe	ed:	
	m bgl				
	L				
(target: no drill	l mud. min 3 v	vell vol. or drv)			
1					
etails					
		1			
		e have			
Yes / 10 (interface /	visual). Thickn	ess if observe	ed:	
S.a	m-bgl				
	L				
-	L				
	Water Quality	v Parameters			
Temp (°C)			nH	Turbidity	Redox (mV)
					+/- 10 mV
0.7 C	1/- 0.5 mg/L	.1- 378		1/- 1078	- 10 mv
		0.1			
-	1 0 1 10	OGG(L)			
	DARAM	BTER)			
NO	PARAM	RTGR)	105 1 1	n RG	
po	PARAM	RTCH CIRICA	Jacon	n RE-	
- NO	PARAM	RETURN CURNIT	Jacon	nKZ	
- PO - //C	PARAM	R (EIL) C (RX)T	Jacon	n RE	
- PO - //C	PARAM	R (EL) C (RX)T	Jacon	N R E	
110	PARAM	R (EL) C C R X X	Jacun	~ K &	
11C	PARAM SUFFI	R (EP) C C R X X	Javr	ARG	
110	PARAM SUFFI	E (ER) CIEXX	Jacon	A K &	
//C	SUFFF SUFFF	CCCXXX TDS	Jacon	A K &	
//C		TDS	Jacon	A K &	
DO % Sat		E (ER) CIEXX	Jacon		
DO % Sat		TDS	Jacon		
DO % Sat	<u>Sample</u> m bgl,	TDS	Jacon		
DO % Sat	Sample	TDS	Jacon	A K E	
DO % Sat	<u>Sample</u> m bgl,	TDS	Jacon		
DO % Sat	<u>Sample</u> m bgl,	TDS	Jacon		
DO % Sat	<u>Sample</u> m bgl,	TDS			
g-a Pale MwD	<u>Sample</u> m bgl, ry - bra-	TDS Details	Jacon Jacon	r Red (He	Hech)
g-a Pale MwD	<u>Sample</u> m bgl, ry - bra-	TDS Details	Jaco A	r Red (He	Hect)
g-a Pale MwD	<u>Sample</u> m bgl,	TDS Details	Jacob In	r Red (He	Hect)
g-a Pale MwD	<u>Sample</u> m bgl, ry - bra-	TDS Details	Jacon Lats 1: ph	+ ned (te	Hect)
g-a Pale MwD	<u>Sample</u> m bgl, ry - bra-	TDS Details	Jacon als li shall a	+ Red (te ettige))	Huch)
Ren BT	Sample m bgl, ry-bran Aber Aber Aber	TDS Details 3 + U 1 + R 0 x R/PC6	Jacon plans 1 plan 1 Shale a	+ Red (He + Red (He + Hoge))	Hecl)
Ren BT	Sample m bgl, ry-bran Aber Aber Aber	TDS Details 3 + U 1 + R 0 x R/PC6	Jacon Ja	+ Red (He + Red (He + Hoge))	Huch)
Ren BT	Sample m bgl, ry-bran Aber Aber Aber	TDS Details 3 + U 1 + R 0 x R/PC6	Jals 17 Jals 17 Shale a	+ Red (He + Red (He + Hoge)) sls , JO(Huch)
g-a Pale MwD	Sample m bgl, ry - bron Alber 4 room	TDS Details 3 + U 1 + R 0 x R/PC6	Jals 17 Jals 17 Shale a , Phero	+ Red (te + Red (te + I ge)) sls, JOG	(Rev March 20
	VILCA 86819.0 86819.0 - - - Yes / No ((target: no drill etails 073. Stri 0.0 8.1 9.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Vice A word 868 Provided 868 Provided 868 Provided 968	Vice A wool 868 9.01 m bgl m bgl m bgl m bgl L (target: no drill mud, min 3 well vol. or dry) etails 073. String Model M bgl L (target: no drill mud, min 3 well vol. or dry) etails 073. String Water Guality Parameters L L L L Mater Quality Parameters Temp (°C) DO (mg/L) EC (µS or mS/cm) 0.1° C +/- 0.3 mg/L	Vice A $\omega \otimes \omega g$ 868 1 9.01 - m bgl m bgl - m bgl - Imbgl - m bgl - Imbgl - m bgl L (target: no drill mud, min 3 well vol. or dry) etails Imbgl Imbgl	Vice A coold n = porosity (0.3 material) S68 1 9.01 n = porosity (0.3 material) b, = beight of widdle b, = beight of widdle - m bgl m bgl Bore Vol Normall m bgl Bore Vol Normall m bgl Image: State of the state o

Groundwater Field Sheet

Bore V	olum	e = casing volume + filter pack	
 =		volume	i
 -		$= \pi h_1 d_2^2 / 4 + n(\pi h_1 d_1^2 / 4 - \pi h_2 d_2^2 / 4)$	
			1

Groundwater Field She	eet				Bore Volume = casing vo	olume + filter pack
Project and Bore Installation	Details				volume = $\pi h_1 d_2^2/4$	+ $n(\pi h_1 d_1^2/4 - \pi h_2 d_2^2/4)$
Bore / Standpipe ID:	MUS				Where: $\pi = 3.14$	
Project Name:	868190	GI ,		2	n = porosity (0.3	for most filter pack
Project Number:	Ulla	word			material)	
Site Location:	1/ 00				h, = height of w	
Bore GPS Co-ord:					d ₁ = diameter of h ₂ = length of fil	
Installation Date:	18.00.1	х.			d ₂ = diameter of	
GW Level (during drilling):		m bgl			Bore Vol Normall	y: 7.2*h
Well Depth:		m bgl				
Screened Interval:		m bgl				
Contaminants/Comments:	-	in sgi				
Bore Development Details		28	1			
Date/Time:	V. () /4					
Purged By:						
GW Level (pre-purge):	- 8 (m bgl				
GW Level (post-purge):	G	m bgl				
PSH observed:	Yes / No (visual). Thickr	ess if obser	vod:	
Observed Well Depth:		m bgl	visual J. THICKI	icas il obsel	veu.	
Estimated Bore Volume:	-1					
Total Volume Purged:	(target: no drill	E mud min 2 v	vell vol or dry)	DRY		
		muu, mm s v	ven vor. or ury)	2 - I		
Equipment:	Turs	2 pm	I IN Me	Tel 197		
Micropurge and Sampling D	etails 2.4.1.	20				
Date/Time:					8	
Sampled By:	JJt				55	
Weather Conditions:	0	velast				
GW Level (pre-purge):	8.55	m bgl				
GW Level (post sample):	9+1	m bgl				
PSH observed:			visual). Thickr	less if obser	ved:	
Observed Well Depth:	9.2	m bgl				
Estimated Bore Volume:	6	L				
Total Volume Purged:	Contraction of the	L				
Equipment:	Wan	, vat a	Ar, per,	2~p)		
	1	Water Qualit	y Parameters	1		
Time / Volume	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	pН	Turbidity	Redox (mV)
Stabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L	+/- 3%	+/- 0.1	+/- 10%	+/- 10 mV
			0.00			
	01	A A NO	ABIN			
	1001	HEAL	CA VEN J			
		. C T	1.01	IT		
-		DJUPF	10150	1		
		1/1/0	LIME	,		
		00		/		
Additional Readings Following	DO % Sat	SPC	TDS			
stabilisation:						-
	-l	Sample	e Details			
Sampling Depth (rationale):	86-9.2	m bgl,				
Sample Appearance (e.g.	1					
colour, siltiness, odour):	prov	to pole	Sn-bru-			
Sample ID:	Mw 3	· · · · · · · · · · · · · · · · · · ·				
QA/QC Samples:						
Sampling Containers and	7.A.L.	r IV	0-10	Rul	liclo	
filtration:	U Mass			041	100	
Ind adon.						
	1 x hed (F) IY	lod_l hr-			
Comments / Observations:	1 Y Red (F) IY	LOD_L hr~			

Appendix G

Summary Laboratory Results

Table G1a: Summary of Laboratory Results – Metals, TRH, BTEX, PAH

						Me	tals						TF					BT	EX			PA	Н	
			Arsenic	Cadmium	Total Chromium	Copper	Lead	Mercury (inorganic)	Nickel	Zinc	TRH C6 - C10	TRH >C10-C16	F1 ((C6-C10)- BTEX)	F2 (>C10-C16 less Naphthalene)	F3 (>C16-C34)	F4 (>C34-C40)	Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene ^b	Benzo(a)pyrene (BaP)	Benzo(a)pyrene TEQ	Total PAHs
		PQL	4	0.4	1	1	1	0.1	1	1	25	50	25	50	100	100	0.2	0.5	1	1	1	0.05	0.5	0.05
Sample ID	Depth	Sampled Date	mg/kg 5	mg/kg <0.4	mg/kg 11	mg/kg 27	mg/kg 11	mg/kg <0.1	mg/kg 5	mg/kg 34	mg/kg <25	mg/kg <50	mg/kg <25	mg/kg <50	mg/kg <100	mg/kg <100	mg/kg <0.2	mg/kg <0.5	mg/kg <1	mg/kg	mg/kg	mg/kg <0.05	mg/kg <0.5	mg/kg <0.05
MW1	0 - 0.2m	17/12/2019	500 100	150 NC	500 410	30000 70	1200 1100	120 NC	1200 160	60000 470	NC NC	NC NC	45 180	110 120	NC 300	NC 2800	0.5 50	160 85	55 70	<1 40 105	<1 3 170	NC 0.7	4 NC	400 NC
BD3/20191217	0m	17/12/2019	6 500 100	<0.4 150 NC	14 500 410	23 30000 70	14 1200 1100	<0.1 120 NC	8 1200 160	45 60000 470	<25 NC NC	<50 NC NC	<25 45 180	<50 110 120	<100 NC 300	<100 NC 2800	<0.2 0.5 50	<0.5 160 85	<1 55 70	<1 40 105	<1 3 170	<0.05 NC 0.7	<0.5 4 NC	<0.05 400 NC
MW1	0.3 - 0.5m	17/12/2019	6 500 100	<0.4	16 500 410	19 30000 70	14 1200 1100	<0.1	5 1200 160	27 60000 470	<25	<50	<25 45 180	<50 110 120	<100 NC 300	<100	<0.2	<0.5 160 85	<1 55 70	<1 40 105	<1 3 170	<0.05	<0.5	<0.05
MW2	0 - 0.2m	17/12/2019	4	<0.4	14 500 410	25	15 1200 1100	<0.1 120 NC	15 1200 160	55	<25	<50	<25 45 180	<50 110 120	140 NC 300	<100 NC 2800	<0.2 0.5 50	<0.5	<1 55 70	<1 40 105	<1 3 170	<0.05 NC 0.7	<0.5	<0.05
MW2	0.3 - 0.5m	17/12/2019	7	<0.4	16	9	12	<0.1	3	11	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05
MW2	0.8 - 1m	17/12/2019	500 100 5	150 NC <0.4	500 410 14	30000 70 14	1200 1100 13	120 NC <0.1	1200 160 4	60000 470 21	NC NC <25	NC NC <50	45 180 <25	110 120 <50	NC 300 <100	NC 2800 <100	0.5 50 <0.2	160 85 <0.5	55 70 <1	40 105 <1	3 170 <1	NC 0.7 <0.05	4 NC <0.5	400 NC <0.05
A1	0-0.2m	17/12/2019	500 100 NT	150 NC NT	500 410 NT	30000 70 NT	1200 1100 NT	120 NC NT	1200 160 NT	60000 470 NT	NC NC NT	NC NC NT	45 180 NT	110 120 NT	NC 300 NT	NC 2800 NT	0.5 50 NT	160 85 NT	55 70 NT	40 105 NT	3 170 NT	NC 0.7 NT	4 NC NT	400 NC NT
			500 100 8	150 NC <0.4	500 410 9	30000 70 30	1200 1100 14	120 NC <0.1	1200 160 13	60000 470 62	NC NC <25	NC NC 61	45 180 <25	110 120 61	NC 300 200	NC 2800 110	0.5 50 <0.2	160 85 <0.5	55 70 <1	40 105 <1	3 170 <1	NC 0.7 <0.05	4 NC <0.5	400 NC <0.05
MW3	0 - 0.2m	17/12/2019	500 100 4	150 NC <0.4	500 410 11	30000 70 25	1200 1100 14	120 NC <0.1	1200 160 8	60000 470 50	NC NC <25	NC NC <50	45 180 <25	110 120 <50	NC 300 <100	NC 2800 <100	0.5 50 <0.2	160 85 <0.5	55 70 <1	40 105 <1	3 170 <1	NC 0.7 <0.05	4 NC <0.5	400 NC <0.05
MW3	0.8 - 1m	17/12/2019	500 100 <4	150 NC <0.4	500 410 55	30000 70 47	1200 1100 5	120 NC <0.1	1200 160 59	60000 470 43	NC NC <25	NC NC 62	45 180 <25	110 120 62	NC 300 240	NC 2800 380	0.5 50 <0.2	160 85 <0.5	55 70 <1	40 105 <1	3 170 <1	NC 0.7	4 NC <0.5	400 NC 0.2
BH1	0.05 - 0.15m	17/12/2019	500 100	150 NC	500 410	30000 70	1200 1100	120 NC	1200 160	60000 470	NC NC	NC NC	45 180	110 120	NC 300	NC 2800	0.5 50	160 85	55 70	40 105	3 170	NC 0.7	4 NC	400 NC
BH1	0.3 - 0.5m	17/12/2019	5 500 100	<0.4 150 NC	29 500 410	17 30000 70	11 1200 1100	<0.1 120 NC	18 1200 160	22 60000 470	<25 NC NC	<50 NC NC	<25 45 180	<50 110 120	<100 NC 300	<100 NC 2800	<0.2 0.5 50	<0.5 160 85	<1 55 70	<1 40 105	<1 3 170	<0.05 NC 0.7	<0.5 4 NC	<0.05 400 NC
BH1	0.8 - 1m	17/12/2019	<4 500 100	<0.4	29 500 410	76 30000 70	6 1200 1100	<0.1	33 1200 160	33 60000 470	<25	64	<25 45 180	64 110 120	740 NC 300	1100 NC 2800	<0.2 0.5 50	<0.5 160 85	<1 55 70	<1 40 105	<1 3 170	0.05 NC 0.7	<0.5	0.05 400 NC
BH2	0.05 - 0.15m	17/12/2019	5 500 100	<0.4	15 500 410	15 30000 70	11 1200 1100	<0.1	5 1200 160	18 60000 470	<25	<50	<25 45 180	<50 110 120	<100 NC 300	<100 NC 2800	<0.2	<0.5	<1 55 70	<1 40 105	<1 3 170	<0.05	<0.5	<0.05
BH2	0.3 - 0.5m	17/12/2019	5	<0.4	32 500 410	28	10	<0.1	25 1200 160	26 60000 470	<25	54 NC NC	<25 45 180	54 110 120	360 NC 300	400 NC 2800	<0.2	<0.5	<1 55 70	<1 40 105	<1 3 170	<0.05	<0.5	<0.05
BH2	0.8 - 1m	17/12/2019	8	<0.4	11	22	13	<0.1	4	23	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05
BH3	0.3 - 0.5m	17/12/2019	500 100 8	150 NC <0.4	500 410 31	19	1200 1100 23	120 NC <0.1	13	60000 470 26	NC NC <25	NC NC 64	45 180 <25	64	NC 300 200	NC 2800 180	<0.2	160 85 <0.5	<1	40 105 <1	3 170 <1	NC 0.7 <0.05	4 NC <0.5	400 NC <0.05
BH3	0.8 - 1m	17/12/2019	500 100 5	150 NC <0.4	500 410 14	30000 70 16	1200 1100 10	120 NC <0.1	1200 160 5	60000 470 14	NC NC <25	NC NC <50	45 180 <25	110 120 <50	NC 300 <100	NC 2800 <100	0.5 50 <0.2	160 85 <0.5	55 70 <1	40 105 <1	3 170 <1	NC 0.7 <0.05	4 NC <0.5	400 NC <0.05
MW1 -	0 - 0.2m	17/12/2019	500 100 5	150 NC <0.4	500 410 13	30000 70 21	1200 1100 13	120 NC <0.1	1200 160 5	60000 470 29	NC NC NT	NC NC NT	45 180 NT	110 120 NT	NC 300 NT	NC 2800 NT	0.5 50 NT	160 85 NT	55 70 NT	40 105 NT	3 170 NT	NC 0.7 NT	4 NC NT	400 NC NT
[TRIPLICATE]			500 100 10	150 NC <0.4	500 410 59	30000 70 24	1200 1100 32	120 NC <0.1	1200 160 10	60000 470 46	NC NC <25	NC NC <50	45 180 <25	110 120 <50	NC 300 <100	NC 2800 <100	0.5 50 <0.2	160 85 <0.5	55 70 <1	40 105 <1	3 170 <1	NC 0.7 <0.05	4 NC <0.5	400 NC <0.05
TP9	0 - 0.3m	26/11/2019	500 100 11	150 NC <0.4	500 410 110	30000 70 42	1200 1100 39	120 NC 0.2	1200 160 7	60000 470 68	NC NC <25	NC NC <50	45 180 <25	110 120 <50	NC 300 <100	NC 2800 <100	0.5 50 <0.2	160 85 <0.5	55 70 <1	40 105 <1	3 170 <1	NC 0.7	4 NC <0.5	400 NC <0.05
BD1/20191126	0m	26/11/2019	500 100 9	150 NC <0.4	500 410 28	30000 70 16	1200 1100 18	120 NC <0.1	1200 160 5	60000 470 26	NC NC <25	NC NC <50	45 180 <25	110 120 <50	NC 300 <100	NC 2800	0.5 50 <0.2	160 85 <0.5	55 70 <1	40 105 <1	3 170	NC 0.7	4 NC <0.5	400 NC <0.05
TP9	0.3 - 0.5m	26/11/2019	500 100	150 NC	500 410	30000 70	1200 1100	120 NC	1200 160	60000 470	NC NC	NC NC	45 180	110 120	NC 300	NC 2800	0.5 50	160 85	55 70	40 105	3 170	NC 0.7	4 NC	400 NC
TP10	0 - 0.3m	26/11/2019	6 500 100	<0.4 150 NC	23 500 410	15 30000 70	45 1200 1100	<0.1 120 NC	7 1200 160	55 60000 470	<25 NC NC	<50 NC NC	<25 45 180	<50 110 120	110 NC 300	<100 NC 2800	<0.2 0.5 50	<0.5 160 85	<1 55 70	<1 40 105	<1 3 170	<0.05 NC 0.7	<0.5 4 NC	<0.05 400 NC
TP10	0.3 - 0.5m	26/11/2019	NT 500 100	NT 150 NC	NT 500 410	NT 30000 70	NT 1200 1100	NT 120 NC	NT 1200 160	NT 60000 470	<25 NC NC	<50 NC NC	<25 45 180	<50 110 120	<100 NC 300	<100 NC 2800	<0.2 0.5 50	<0.5 160 85	<1 55 70	<1 40 105	<1 3 170	<0.05 NC 0.7	<0.5 4 NC	<0.05 400 NC
ACM-2	-	26/11/2019	NT 500 100	NT 150 NC	NT 500 410	NT 30000 70	NT 1200 1100	NT 120 NC	NT 1200 160	NT 60000 470	NT NC NC	NT NC NC	NT 45 180	NT 110 120	NT NC 300	NT NC 2800	NT 0.5 50	NT 160 85	NT 55 70	NT 40 105	NT 3 170	NT NC 0.7	NT 4 NC	NT 400 NC
			300 100	130 NC	00 MT0	30000 70	1200 1100	120 NC	1200 100	00000 4/0	nu nu	NL NC		110 120	nt. 300	wL 2000	v.5 50	100 82	35 70	HU 105	3 1/0	mc 0.7	- NC	HOU INC

Lab result
HIL/HSL value EIL/ESL value

🗧 HIL/HSL exceedance 📕 EIL/ESL exceedance 📕 HIL/HSL and EIL/ESL exceedance 📕 ML exceedance 📕 ML and HIL/HSL or EIL/ESL exceedance

Indicates that asbestos has been detected by the lab below the PQL, refer to the lab report Blue = DC exceedance

Boid = Lab detections NT = Not tested NL = Non limiting NC = No criteria NA = Not applicable NAD = No asbestos detected

Notes: HIL/HSL/DC	NEPC, Schedule B1 - HIL B (Residential / Low - High Density), HSL A/B (Residential / Low - High Density), DC HSL B (Direct contact HSL B Residential (High density))
EIL/ESL	NEPC, Schedule B1 - EIL UR/POS (Urban Residential and Public Open Space), ESL UR/POS (Urban Residential and Public Open Space)
ML	NEPC, Schedule B1 - ML R/P/POS (Residential, Parkland and Public Open Space)
а	QA/QC replicate of sample listed directly below the primary sample
b	reported naphthalene laboratory result obtained from BTEXN suite

c criteria applies to DDT only

Table G2b: Summary of Laboratory Results - Phenol, OCP, OPP, PCB, Asbestos, Asbestos

			Phenol						OCP						OPP	PCB	Abe	stos
			Phenol	DDT+DDE+DDD c	DDD	DDE	DDT	Aldrin & Dieldrin	Total Chlordane	Total Endosulfan	Endrin	Heptachlor	HCB	Methoxychlor	Chlorpyriphos	Total PCB	Asbetsos ID	FA and AF Estimation
		PQL	5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1		< 0.001
Sample ID	Depth	Sampled Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	g	%(w/w)
MW1	0 - 0.2m	17/12/2019	<5 130 NC	<0.1 600 180	<0.1 NC NC	<0.1 NC NC	<0.1 NC 180	<0.1 10 NC	<0.1 90 NC	<0.1 400 NC	<0.1 20 NC	<0.1 10 NC	<0.1 15 NC	<0.1 500 NC	<0.1 340 NC	<0.1 1 NC	NT	<0.001
BD3/20191217	0m	17/12/2019	NT 130 NC	NT 600 180	NT NC NC	NT NC NC	NT NC 180	NT 10 NC	NT 90 NC	NT 400 NC	NT 20 NC	NT 10 NC	NT 15 NC	NT 500 NC	NT 340 NC	NT 1 NC	NT	NT
MW1	0.3 - 0.5m	17/12/2019	NT 130 NC	NT 600 180	NT NC NC	NT NC NC	NT NC 180	NT 10 NC	NT 90 NC	NT 400 NC	NT 20 NC	NT 10 NC	NT 15 NC	NT 500 NC	NT 340 NC	NT 1 NC	NT	NT
MW2	0 - 0.2m	17/12/2019	<5 130 NC	<0.1 600 180	<0.1	<0.1 NC NC	<0.1 NC 180	<0.1 10 NC	<0.1 90 NC	<0.1 400 NC	<0.1 20 NC	<0.1 10 NC	<0.1 15 NC	<0.1 500 NC	<0.1 340 NC	<0.1 1 NC	NT	<0.001
MW2	0.3 - 0.5m	17/12/2019	NT 130 NC	NT 600 180	NT NC NC	NT NC NC	NT NC 180	NT 10 NC	NT 90 NC	NT 400 NC	NT 20 NC	NT 10 NC	NT 15 NC	NT 500 NC	NT 340 NC	NT 1 NC	NT	NT
MW2	0.8 - 1m	17/12/2019	NT 130 NC	NT 600 180	NT NC NC	NT NC NC	NT NC 180	NT 10 NC	NT 90 NC	NT 400 NC	NT 20 NC	NT 10 NC	NT 15 NC	NT 500 NC	NT 340 NC	NT 1 NC	NT	NT
A1	0m	17/12/2019	NT 130 NC	NT 600 180	NT NC NC	NT NC NC	NT NC 180	NT 10 NC	NT 90 NC	NT 400 NC	NT 20 NC	NT 10 NC	NT 15 NC	NT 500 NC	NT 340 NC	NT 1 NC	Detected	NT
MW3	0 - 0.2m	17/12/2019	<5 130 NC	<0.1 600 180	<0.1	<0.1 NC NC	<0.1 NC 180	<0.1 10 NC	<0.1 90 NC	<0.1 400 NC	<0.1 20 NC	<0.1 10 NC	<0.1 15 NC	<0.1 500 NC	<0.1 340 NC	<0.1 1 NC	NT	<0.001
MW3	0.8 - 1m	17/12/2019	<5 130 NC	<0.1 600 180	<0.1	<0.1 NC NC	<0.1 NC 180	<0.1 10 NC	<0.1 90 NC	<0.1 400 NC	<0.1 20 NC	<0.1 10 NC	<0.1 15 NC	<0.1 500 NC	<0.1 340 NC	<0.1 1 NC	NT	NT
BH1	0.05 - 0.15m	17/12/2019	<5 130 NC	<0.1 600 180	<0.1	<0.1 NC NC	<0.1 NC 180	<0.1 10 NC	<0.1 90 NC	<0.1 400 NC	<0.1 20 NC	<0.1 10 NC	<0.1 15 NC	<0.1 500 NC	<0.1 340 NC	<0.1 1 NC	NT	NT
BH1	0.3 - 0.5m	17/12/2019	<5 130 NC	<0.1 600 180	<0.1	<0.1 NC NC	<0.1 NC 180	<0.1 10 NC	<0.1 90 NC	<0.1 400 NC	<0.1 20 NC	<0.1 10 NC	<0.1 15 NC	<0.1 500 NC	<0.1 340 NC	<0.1 1 NC	NT	<0.001
BH1	0.8 - 1m	17/12/2019	NT 130 NC	NT 600 180	NT NC NC	NT NC NC	NT NC 180	NT 10 NC	NT 90 NC	NT 400 NC	NT 20 NC	NT 10 NC	NT 15 NC	NT 500 NC	NT 340 NC	NT 1 NC	NT	NT
BH2	0.05 - 0.15m	17/12/2019	<5 130 NC	<0.1 600 180	<0.1	<0.1 NC NC	<0.1 NC 180	<0.1 10 NC	<0.1 90 NC	<0.1 400 NC	<0.1 20 NC	<0.1 10 NC	<0.1 15 NC	<0.1 500 NC	<0.1 340 NC	<0.1 1 NC	NT	NT
BH2	0.3 - 0.5m	17/12/2019	<5 130 NC	<0.1 600 180	<0.1 NC NC	<0.1 NC NC	<0.1 NC 180	<0.1 10 NC	<0.1 90 NC	<0.1 400 NC	<0.1 20 NC	<0.1 10 NC	<0.1 15 NC	<0.1 500 NC	<0.1 340 NC	<0.1 1 NC	NT	<0.001
BH2	0.8 - 1m	17/12/2019	NT 130 NC	NT 600 180	NT NC NC	NT NC NC	NT NC 180	NT 10 NC	NT 90 NC	NT 400 NC	NT 20 NC	NT 10 NC	NT 15 NC	NT 500 NC	NT 340 NC	NT 1 NC	NT	NT
BH3	0.3 - 0.5m	17/12/2019	<5 130 NC	<0.1 600 180	<0.1	<0.1 NC NC	<0.1 NC 180	<0.1 10 NC	<0.1 90 NC	<0.1 400 NC	<0.1 20 NC	<0.1 10 NC	<0.1 15 NC	<0.1 500 NC	<0.1 340 NC	<0.1 1 NC	NT	<0.001
BH3	0.8 - 1m	17/12/2019	NT 130 NC	NT 600 180	NT NC NC	NT NC NC	NT NC 180	NT 10 NC	NT 90 NC	NT 400 NC	NT 20 NC	NT 10 NC	NT 15 NC	NT 500 NC	NT 340 NC	NT 1 NC	NT	NT
MW1 - [TRIPLICATE]	0 - 0.2m	17/12/2019	NT 130 NC	NT 600 180	NT NC NC	NT NC NC	NT NC 180	NT 10 NC	NT 90 NC	NT 400 NC	NT 20 NC	NT 10 NC	NT 15 NC	NT 500 NC	NT 340 NC	NT 1 NC	NT	NT
TP9	0 - 0.3m	26/11/2019	<5 130 NC	0.1 600 180	<0.1	0.1 NC NC	<0.1 NC 180	<0.1 10 NC	<0.1 90 NC	<0.1 400 NC	<0.1 20 NC	<0.1 10 NC	<0.1 15 NC	<0.1 500 NC	<0.1 340 NC	<0.1 1 NC	NT	<0.001
BD1/20191126	0m	26/11/2019	NT 130 NC	NT 600 180	NT NC NC	NT NC NC	NT NC 180	NT 10 NC	NT 90 NC	NT 400 NC	NT 20 NC	NT 10 NC	NT 15 NC	NT 500 NC	NT 340 NC	NT 1 NC	NT	NT
TP9	0.3 - 0.5m	26/11/2019	NT 130 NC	NT 600 180	NT NC NC	NT NC NC	NT NC 180	NT 10 NC	NT 90 NC	NT 400 NC	NT 20 NC	NT 10 NC	NT 15 NC	NT 500 NC	NT 340 NC	NT 1 NC	NAD	NT
TP10	0 - 0.3m	26/11/2019	<5 130 NC	<0.1 600 180	<0.1 NC NC	<0.1 NC NC	<0.1 NC 180	<0.1 10 NC	<0.1 90 NC	<0.1 400 NC	<0.1 20 NC	<0.1 10 NC	<0.1 15 NC	<0.1 500 NC	<0.1 340 NC	<0.1 1 NC	NT	<0.001
TP10	0.3 - 0.5m	26/11/2019	NT 130 NC	NT 600 180	NT NC NC	NT NC NC	NT NC 180	NT 10 NC	NT 90 NC	NT 400 NC	NT 20 NC	NT 10 NC	NT 15 NC	NT 500 NC	NT 340 NC	NT 1 NC	NT	<0.001
ACM-2	0m	26/11/2019	NT 130 NC	NT 600 180	NT NC NC	NT NC NC	NT NC 180	NT 10 NC	NT 90 NC	NT 400 NC	NT 20 NC	NT 10 NC	NT 15 NC	NT 500 NC	NT 340 NC	NT 1 NC	Detected	NT

Lab result
HIL/HSL value EIL/ESL value

📕 HIL/HSL exceedance 📕 EIL/ESL exceedance 📕 HIL/HSL and EIL/ESL exceedance 📕 ML exceedance 📕 ML and HIL/HSL or EIL/ESL exceedance

Indicates that asbestos has been detected by the lab below the PQL, refer to the lab report Blue = DC exceedance

Boid = Lab detections NT = Not tested NL = Non limiting NC = No criteria NA = Not applicable NAD = No asbestos detected

Notes: HIL/HSL/DC	NEPC, Schedule B1 - HIL B (Residential / Low - High Density), HSL A/B (Residential / Low - High Density), DC HSL B (Direct contact HSL B Residential (Higl
EIL/ESL	NEPC, Schedule B1 - EIL UR/POS (Urban Residential and Public Open Space), ESL UR/POS (Urban Residential and Public Open Space)
ML	NEPC, Schedule B1 - ML R/P/POS (Residential, Parkland and Public Open Space)
а	QA/QC replicate of sample listed directly below the primary sample
b	reported naphthalene laboratory result obtained from BTEXN suite

c criteria applies to DDT only

Douglas Partners

Table 3: Summary of Laboratory Results - Metals, TRH, BTEX, PAH, Phenol, OCP, OPP, PCB, Asbestos

			1			Metals				1	TRH			BTE	X										PAH							Ph	enol	OCP	OPP	PCB						Asbestos					
			Arse ric	Cadmium	Total Chromium	Total Chromium (TCLP)	Load	Nercury (norganic)	Ndol	TRHC6 - C9	C10-C36 recoverable hydrocarbors	Bercone	Toluene	Etrybecore	m+ p-Xyle ne	o-Xylene	Aylenes (total)	Berzo(a)pyre ne (Bal ⁹)	Acon aphthene	A am aphthylen e	Beruc(a)arthr ac	Berzolb (+K/fhu o	ranthene Berzo(g)/L()peryl ene		Unysene Diberco(a)r)arbh racene	Barantiene	Paorene	Indero (1,2,3 - c.d)pyrene	Naphth disne	Phonandrane	Py ere	Tota PAHS	Proso Total Endosultan	Total Analysed 00P	Total Analysed OP	Total PCB	Asbetos ID in sol >0.1g/kg	Trace Analysis	ni CE sotnetsA ge/g1.0< los	Astretos ID in gAgL 0> los	Trace Analysis	ACN >7mm Estimation	FA and AF Estimation	FA and #F Estimation	Total Abbistos#1	Asbertos ID in materials	Total Advector
Sample ID	Depth	PQL Sampled Date	4 mg/kg	0.4 mg/kg	1 mg/kg	0.01 mg/L	1 mg/kg	0.1 mg/kg	1 mg/kg	25 mg/kg	50 mg/kg	0.2 mg/kg	0.5 mg/kg	1	2 mg/kg	1	3 mg/kg	0.05 mg/kg	0.1 mg/kg	0.1 I mg/kg m	.1 0.1 /kg mg/k	0.	2 0.1 kg mg/k	0	1.1 0.1 1/kg mg/kg		1 0.1 /kg mg/kg	0.1 mg/kg	1 mg/kg	0.1 mg/kg		0.05 10,6g mg	5 0.1 p/kg mg/kg	0.1 mg/kg	0.1	0.1 mg/kg						g		<0.001	<0.1 g/kg	_	0.001
Sample ID MW1	0 - 0.2m	Sampled Date 17/12/2019	ingeng	<0.4	11	NT		<0.1	- ing kg	<25	<50	<0.2	<0.5	<1	<2	<1	<1	<0.05	<0.1		0.1 <0.1	< 10	-	_	0.1 <0.1	-		<0.1		<0.1			:5 <0.1	-	<0.1	<0.1	NT	NT	NT	NT	NT	NT.	NT	NT		NT	-
803/20191217	0 - Grann	17/12/2019		<0.4	14	NT	14	<0.1			<50	<0.2	<0.5	4	4	4	d	<0.05	-0.1		2.1 <0.1	_	_	_	0.1 <0.1	_	4.1	<0.1		<0.1			r nt	_	MT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
MW1	0.3 - 0.5m	17/12/2019	-	<0.4	16	NT	14	<0.1			<50	<0.2	<0.5	4	4		a	<0.05	-0.1		.1 -0.1	<0		_	0.1 <0.1	_		<0.1	4	<0.1			r nt	_	MT	NT	NT		NT	NT	NT	NT	NT	NT		NT	NT
MW2	0 - 0.2m	17/12/2019	4	<0.4	14	NT	15	<0.1	15		150	<0.2	<0.5	4	4		a	<0.05	-0.1		.1 (0.1	_		_	0.1 <0.1	_	1.1 <0.1	<0.1	_	<0.1			di (11	_	<0.1	<0.1	NT	NT	NT	NT	NT	NT	NT	NT		NT	NT
MW2	0.3 - 0.5m	17/12/2019		<0.4	16	NT	12	<0.1			<50	<0.2	<0.5		4			<0.05	-01		2.1 (0.1	<0		_	0.1 <0.1	_		<0.1	_	<0.1			r nt	_	MT	NT	NT	NT	NT	NT	NT	NT	NT	NT		NT	NT
MW2	0.8 - 1m	17/12/2019		<0.4	10	NT	11	<0.1	4	- 45	<50	4.2	<0.5	d	4	4	a	<0.05	-011		1 01	_		_	0.1 <0.1	_		<0.1	_	<0.1			а м	_	MT	NT	NT	NT NT	NT	NT	NT	NT	NT	NT		NT	NT
Al	ûm	17/12/2019	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT		T NT	N		_	17 NT	_	_	NT	NT	NT			r nt	_	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
MW3	0 - 0.2m	17/12/2019		<0.4	9	NT	14	<0.1	13	<25	334	<0.2	<0.5	<1	-2	4	d	<0.05	<0.1	<0.1	.1 <0.1	<0	2 <0.1	1 <	0.1 <0.1	<0	4.1	<0.1	-	<0.1	<0.1	0.05 .	5 -0.1	<0.1	<0.1	<0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
MW3	0.8 - 1m	17/12/2019	4	<0.4	11	NT	14	<0.1		<25	<50	<0.2	<0.5	<1	4	<1	d	<0.05	<0.1	<0.1	.1 <0.1	<0	2 <0.1	1 <	0.1 <0.1	<0	u d.1	<0.1	d	<0.1	<0.1	0.05	-5 -0.1	<0.1	<0.1	<0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH1	0.05 - 0.15m	17/12/2019	<4	<0.4	55	NT	s	<0.1	59	<25	440	<0.2	<0.5	<1	-2	<1	d	<0.05	<1.1	<0.1	0.1 <0.1	<0	2 <0.1	1 <	0.1 <0.1	<0	L1 <0.1	<0.1	<1	0.2	<0.1	0.2	-5 -0.1	<0.1	<0.1	<0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
8H1	0.3 - 0.5m	17/12/2019	5	<0.4	29	NT	11	<0.1	28	<25	<50	<0.2	<0.5	<1	<2	<1	<1	<0.05	<0.1	<0.1	0.1 <0.1	<0	.2 <0.1	1 <	0.1 <0.1	<0	.1 <0.1	<0.1	<1	<0.1	<0.1	0.05	-5 <0.1	<0.1	<0.1	<0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
8H1	0.8 - 1m	17/12/2019	<4	<0.4	29	NT	6	<0.1	33	<25	1199	<0.2	<0.5	<1	-2	<1	<1	0.05	<0.1	<0.1	0.1 <0.1	<0	2 <0.1	1 <	0.1 <0.1	<0	.1 <0.1	<0.1	<1	<0.1	<0.1	0.05 1	ат мт	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH2	0.05 - 0.15m	17/12/2019	5	<0.4	15	NT	11	<0.1	5	<25	<50	<0.2	<0.5	<1	-2	<1	d	<0.05	<0.1	<0.1	0.1 <0.1	<0	2 <0.1	1 <	0.1 <0.1	<0	1.1 <0.1	<0.1	<1	<0.1	<0.1	-0.05	-5 -0.1	<0.1	<0.1	<0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
8H2	0.3 - 0.5m	17/12/2019	5	<0.4	32	NT	10	<0.1	25	<25	581	<0.2	<0.5	<1	<2	<1	4	<0.05	<0.1	<0.1	0.1 <0.1	<0	2 <0.1	1 <	0.1 <0.1	<0	11 <0.1	<0.1	<1	<0.1	<0.1	-0.05	:5 <0.1	<0.1	<0.1	<0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
8H2	0.8 - 1m	17/12/2019		<0.4	11	NT	13	<0.1	4	<25	<50	<0.2	<0.5	<1	<2	<1	<3	<0.05	<0.1	<0.1	0.1 <0.1	<0	2 <0.1	1 <	0.1 <0.1	<0	4.1	<0.1	<1	<0.1	<0.1	0.05 1	ит мт	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH3	3 - 0.5m	17/12/2019	8	<0.4	31	NT	23	<0.1	13	<25	361	<0.2	<0.5	<1	-2	<1	d	<0.05	<0.1	<0.1	0.1 <0.1	<0	2 <0.1	1 <	0.1 <0.1	<0	.1 <0.1	<0.1	<1	<0.1	<0.1	-0.05	-5 <0.1	<0.1	<0.1	<0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BH3	0.8 - 1m	17/12/2019	5	<0.4	14	NT	10	<0.1	5	<25	<50	<0.2	<0.5	<1	<2	<1	4	<0.05	<0.1	<0.1	0.1 <0.1	<0	.2 <0.1	1 <	0.1 <0.1	<0	L1 <0.1	<0.1	<1	<0.1	<0.1	-0.05 1	ат мт	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
MW1 - [TRIPLICATE]	0 - 0.2m	17/12/2019	5	<0.4	13	NT	13	<0.1	5	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	IT NT	N	r nt		NT NT	N	T NT	NT	NT	NT	NT	NT	ат мт	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP9	0 - 0.3m	26/11/2019	10	<0.4	59	NT	32	<0.1	30	<25	<50	<0.2	<0.5	<1	-2	<1	<3	<0.05	<0.1	<0.1	0.1 <0.1	<0	.2 <0.1	1 <	0.1 <0.1	<0	4.1	<0.1	<1	<0.1	<0.1	-0.05 -	-5 <0.1	0.1	<0.1	<0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
BD1/20191126	ûm	26/11/2019	11	<0.4	110	<0.01	29	0.2	7	<25	<50	<0.2	<0.5	<1	-2	<1	<3	<0.05	<0.1	<0.1	0.1 <0.1	<0	.2 <0.1	1 <	0.1 <0.1	<0	4.1	<0.1	<1	<0.1	<0.1	-0.05 1	ат мт	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP9	0.3 - 0.5m	26/11/2019	9	<0.4	28	NT	18	<0.1	5	<25	<50	<0.2	<0.5	<1	-2	<1	<3	<0.05	<0.1	<0.1	0.1 <0.1	<0	.2 <0.1	1 <	0.1 <0.1	<0	4.1	<0.1	<1	<0.1	<0.1	-0.05 1	ат мт	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP10	0 - 0.3m	26/11/2019	6	<0.4	23	NT	4	<0.1	7	<25	300	<0.2	<0.5	<1	-2	<1	<1	<0.05	<0.1	<0.1	0.1 <0.1	<0	2 <0.1	1 <	0.1 <0.1	<0	L1 <0.1	<0.1	<1	<0.1	<0.1	-0.05 -	-5 <0.1	<0.1	<0.1	<0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
TP10	0.3 - 0.5m	26/11/2019	NT	NT	NT	NT	NT	NT	NT	<25	<50	<0.2	<0.5	<1	4	<1	d	<0.05	<0.1	<0.1	0.1 <0.1	<0	2 <0.1	1 <	0.1 <0.1	<0	4.1	<0.1	-1	<0.1	<0.1	-0.05 P	rt NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
ACM-2	0m	26/11/2019	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	IT NT				NT NT	N	T NT	NT	NT	NT	NT	NT	IT NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	CT1 (mg/kg)																					Wast	e Classificati	ion Criter	ia 	1			NA			1		1	1 .		1							<u> </u>		<u> </u>	
	SCC1 (mg/kg)		500	100	1900	NA NA	1500	4	40	650	10000	10	203	1090	N/A N/A	NA	1900	u.S	N/A N/A	NA I	(A NA	N	A NA		ua N/A	N	a NA	NA	N/A N/A	N/A N/A	NA	200 2	aa 60 16 106	50	7.5	50	NA	NA	NA	N/A N/A	N/A	N/A N/A	N/A N/A	N/A N/A	NA	NA	NGA
	TCLP1 (mg/L)		N/A	N/A	N/A		N/A	N/A	N/A	NA	N/A.	N/A	N/A	N/A	N/A	N/A	NJA	N/A	N/A	N/A I	A NA	Né	A NA	N 1	ua nya	N/	u NjA	NA	N/A	N/A	N/A	N/A N	IA NA	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A.	N/A	NA	N/A.		N/A	N/A
	CT2 (mg/kg)		400	80	400	N/A	400	16	160	2600	40000	40	1152	2400	N/A	N/A	4000	3.2	N/A	N/A I	A NA	N	A NA	N 1	UA N/A	N	NA NA	N/A	N/A	N/A	N/A	800 1	152 240	50	16	50	N/A	ŊA	N/A.	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	SCC2(mg/kg) TCLP2 (mg/L)		2000 N/A	400 N/A	7600	N/A	6000	200	4200	2600	40000	72	2073	4320	N/A	N/A	7200	23	N/A	N/A I	(A N/A	N/	A NA		UA N/A	N	A NA	N/A	N/A	N/A	NA	800 21	432	50	30	50	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A.	N/A	N/A N/A	N/A
	(11)		40	ajā	20		- 140	40	438	1 40	.404	-14/6	20	nyel	196	20	njA.		44	190	10		1 40		1 4/4	1 1		1 42	1 100	1 45	90		10 1 10	1 100	1 40	1 100	1 40	40	1 105	48		- 14/5	20	140	190	90	190

CT1 exceedance CLP1 and/or SCC1 exceedance CT2 exceedance Askeetos detected
NT = Not basket
NC = No orbania AD = Askeetos detected
NAD = No askeetos detected

Table G3 - ENM Assessment (All results in mg/kg unless otherwise stated)

							Ме	tals				P/	AH	TRH		BT	EX			(dS/m)	/276
Test Pit/ Sample ID	Depth (m)	Sampling Date	Soil Type	Arsenic	Cadmium	Chromium (Total)	Copper	Lead	Mercury	Nickel	Zinc	Benzo(a) Pyrene (BaP)	Total PAH	C10-C36	Benzene	Toluene	Ethylbenzene	Xylenes	* Hq	Electrical Conductivity (c	Foreign Materials - RTA ENM (%)
	PQL			4	0.4	1	1	1	0.1	1	1	0.05	0.05	<250	0.2	0.5	1	3	-	0.001	0.05
	er (NSW EPA 2																				
	Average Conce			20	0.5	75	100	50	0.5	30	150	0.5	20	250	-	-	-	-	5-9	1.5	0.05
Absolute M	aximum Conce	entration		40	1	150	200	100	1	60	300	1	40	500	0.5	65	25	15	4.5-10	3	0.1
								Stockp	oile Sampli	n <mark>g - Nove</mark> rr	nber 2019										
SPA-1 C	-	26/11/2019	Fill	4	<0.4	9	37	15	<0.1	20	80	-	-	-	-	-	-	-	9.1	0.22	< 0.05
SPA-1 D	-	26/11/2019	Fill	-	-	-	-	-	-	-	-	< 0.05	<0.05	<250	<0.2	<0.5	<1	<3	-	-	-
SPA-2 C	-	26/11/2019	Fill	5	<0.4	10	39	23	<0.1	35	110	-	-	-	-	-	-	-	9.2	0.17	< 0.05
SPA-2 D	-	26/11/2019	Fill	-	-	-	-	-	-	-	-	<0.05	<0.05	<250	<0.2	<0.5	<1	<3	-	-	-
SPA-3 C	-	26/11/2019		6	<0.4	11	39	18	<0.1	24	98	-	-	-	-	-	-	-	9.2	0.28	<0.05
SPA-3 D	-	26/11/2019		-	-	-	-	-	-	-	-	<0.05	<0.05	<250	<0.2	<0.5	<1	<3	-	-	-
SPB-1 C	-	26/11/2019		8	<0.4	10	31	23	<0.1	18	69	-	-	-	-	-	-	-	8.4	0.31	<0.05
SPB-1 D	-	26/11/2019		-	-	-	-	-	-	-	-	<0.05	<0.05	<250	<0.2	<0.5	<1	<3	-	-	-
SPB-2 C	-	26/11/2019		9	<0.4	8	31	18	<0.1	21	79	-	-	-	-	-	-	-	8.3	0.31	<0.05
SPB-2 D	-	26/11/2019		-	-	-	-	-	-	-	-	<0.05	<0.05	<250	<0.2	<0.5	<1	<3	-	-	-
SPB-3 C	-	26/11/2019		7	<0.4	9	25	15	<0.1	17	56	-	-	-	-	-	-	-	8.4	0.23	<0.05
SPB-3 D	-	26/11/2019	Fill	-	-	-	-	-	-	-	-	<0.05	<0.05	<250	<0.2	<0.5	<1	<3	-	-	-
	Average			<4	<0.4	9.5	33.7	18.7	<0.1	22.5	82	<0.05	<0.05	<250	<0.2	<0.5	<1	<3	8.77	0.25	<0.05

NSW EPA (2014)

*

Waste Classification Guidelines - Part 1: Classifying Waste

Duplicate sample is listed below primary sample Not detected at the laboratory reporting limit of 0.1g/kg а NAD

Ranges given for pH are for the minimum and maximum acceptable pH values

<PQL All group analytes below practical quantification limit

Table F3: Summary of Laboratory Results for Groundwater Analysis

Table F3: Summa		itory result		ounav		anarysis	5		_												-							-							
					TR	H				TPH				BTEX				VO	С				I	PAH					Pi	iority H	eavy Me	als (tota	l dissolve	d)	
Sample ID	Depth ^d	Date Sampled	TRH C ₆ - C ₁₀	TRH >C ₁₀ - C ₁₆	C6-C10 less BTEX (F1)	>C10-C16 less Naphthalene (F2)	>C16-C34	>C34-40	>C10-C16 (SGC)	> C16-C34 (SGC)	>C34-C40 (SGC)	Benzene	Toluene	Ethylbenzene	m+p-xylene	o-xylene	Chloroform	PCE	Other VOC	Naphthalene	BaP	BaP TEQ	Anthracene	Phenanthrene	Fluoranthene	Total PAH	Total Phenols	As	Cd	Cr	Cu	Pb	Hg	Ni	Zn
	m bgl		μg/L	μg/L	μg/L	μg/L	μg/L	µg/L	μg/L	μg/L	μg/L	µg/L	µg/L	μg/L	μg/L	µg/L	μg/L	μg/L	µg/L	μg/L	µg/L	μg/L	µg/L	µg/L	µg/L	μg/L	mg/L	µg/L	µg/L	μg/L	μg/L	μg/L	μg/L	µg/L	µg/L
Groundwater Invest	tigation Level	s																																	
HSL (NEPC 2013)			200	NL	-	-	-	-	-	-	-	0.5	540	-	170	170	-	-	-	NL	-	-	-	-	-	-	-	-		-		-	-	-	-
GIL - fresh water (AN	IZG 2018)		-	-	-	-	-	-	-	-	-	950	180 ^g	80 ^g	75 / 200 ^{h,} g	350 ^g	370 ^g	-	-	16	0.1 ^g ,i		0.01 ^g ,i	0.6 ^g , i	1 ^g ,i	-	3.6 ^{f, i}	24/13 e, g	0.2	3.3/ 1 ^b	1.4	3.4	0.06 ⁱ	11	8
Laboratory Results	5		-																		-														
MW1	7	24/1/20	<10	<50	<10	<50	<100	<100	-	-	-	<1	<1	<1	<2	<1	<1	<1	<pql< td=""><td><1</td><td><1</td><td><5</td><td><1</td><td><1</td><td><1</td><td>NIL +VE</td><td>< 0.05</td><td><1</td><td>0.2</td><td><1</td><td>1</td><td><1</td><td>< 0.05</td><td>16</td><td>23</td></pql<>	<1	<1	<5	<1	<1	<1	NIL +VE	< 0.05	<1	0.2	<1	1	<1	< 0.05	16	23
BD1/20200124	7	24/1/20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	<1	<pql< td=""><td><1</td><td>•</td><td>•</td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td><1</td><td>0.1</td><td><1</td><td><1</td><td><1</td><td>< 0.05</td><td>15</td><td>15</td></pql<>	<1	•	•		-	-	-	-	<1	0.1	<1	<1	<1	< 0.05	15	15
MW2	8.1	24/1/20	<10	600	<10	600	970	<100	420	660	<100	<1	<1	<1	<2	<1	<1	<1	<pql< td=""><td><1</td><td><1</td><td><5</td><td><1</td><td>3</td><td><1</td><td>4.7</td><td>< 0.05</td><td>3</td><td>0.6</td><td><1</td><td>2</td><td><1</td><td>< 0.05</td><td>29</td><td>67</td></pql<>	<1	<1	<5	<1	3	<1	4.7	< 0.05	3	0.6	<1	2	<1	< 0.05	29	67
MW3	8.55	24/1/20	<10	1700	<10	1700	2500	300	1200	1700	190	<1	<1	-1	<2	<1	<1	<1	<pql< td=""><td><1</td><td>2</td><td><5</td><td><1</td><td>9</td><td><1</td><td>22</td><td>< 0.05</td><td>4</td><td><0.1</td><td><1</td><td><1</td><td><1</td><td>< 0.05</td><td><1</td><td>3</td></pql<>	<1	2	<5	<1	9	<1	22	< 0.05	4	<0.1	<1	<1	<1	< 0.05	<1	3

Notes:

а	Laboratory	replicate	sample	of sample	listed directly	above
---	------------	-----------	--------	-----------	-----------------	-------

b given in order of Cr(VI) / Cr(III)

c Threshold value for Cr (VI)

d Depth to groundwater as measured immediately prior to sampling

e Given in order As(III)/ As(V)

f threshold for pentachlorophenol as a conservative screen

g ANZG DGV of unknown reliability

h m-xylene threhold of 75ug/L, p-xylene threshold of 200ug/L adopted from freshwater figure

i 99% LOP adopted due to the potential for bioaccumulation

j threshold for aldrin as a conservative screen

k threshold for chlorpyrifos adopted as an initial screen

threshold for Aroclor 1242 as a conservative screen

- Not defined/ not analysed/ not applicable

italics ANZG DGV of unknown reliability

BOLD Concentration Detected at or above the PQL

BOLD Exceeds GIL or HSL

Abbreviations

ADWG Australian Drinking Water Guideline

As arsenic

BaP benzo(a)pyrene

BTEX benzene, toluene, ethyl benzene, total xylenes

Cd cadmium

Cr chromium

Cu copper

GIL groundwater investigation level

Hg mercury

Ni nickel

- PAH polycyclic aromatic hydrocarbons
- Pb lead
- PQL practical quantitation limit
- TRH total recoverable hydrocarbons, including total petroleum hydrocarbons (TPH)
- VOC volatile organic compounds

Zn zinc

SGC Silica gel cleanup

Appendix H

Laboratory Documentation

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 231726

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Joel James-Hall, Jack Snowden
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	86819.01, Villawood
Number of Samples	17 SOIL, 1 MATERIAL
Date samples received	27/11/2019
Date completed instructions received	27/11/2019

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

Date results requested by 04/12/2019 02/12/2019 Date of Issue NATA Accreditation Number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Wonnie Condos, Aida Marner Authorised by Asbestos Approved Signatory: Lucy Zhu **Results Approved By** Diego Bigolin, Team Leader, Inorganics Josh Williams, Senior Chemist Loren Bardwell, Senior Chemist Lucy Zhu, Senior Asbestos Analyst

Priya Samarawickrama, Senior Chemist

Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		231726-1	231726-2	231726-3	231726-4	231726-6
Your Reference	UNITS	TP9	TP9	TP10	TP10	SPA-1 D
Depth		0-0.3	0.3-0.5	0-0.3	0.3-0.5	-
Date Sampled		26/11/2019	26/11/2019	26/11/2019	26/11/2019	26/11/2019
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date extracted	-	28/11/2019	28/11/2019	28/11/2019	28/11/2019	28/11/2019
Date analysed	-	28/11/2019	28/11/2019	28/11/2019	28/11/2019	28/11/2019
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	80	84	84	72	90
vTRH(C6-C10)/BTEXN in Soil						
vTRH(C6-C10)/BTEXN in Soil Our Reference		231726-8	231726-10	231726-12	231726-14	231726-16
	UNITS	231726-8 SPA-2 D	231726-10 SPA-3 D	231726-12 SPB-1 D	231726-14 SPB-2 D	231726-16 SPB-3 D
Our Reference	UNITS					
Our Reference Your Reference	UNITS					
Our Reference Your Reference Depth	UNITS	SPA-2 D -	SPA-3 D -	SPB-1 D -	SPB-2 D -	SPB-3 D -
Our Reference Your Reference Depth Date Sampled	UNITS -	SPA-2 D - 26/11/2019	SPA-3 D - 26/11/2019	SPB-1 D - 26/11/2019	SPB-2 D - 26/11/2019	SPB-3 D - 26/11/2019
Our Reference Your Reference Depth Date Sampled Type of sample	UNITS - -	SPA-2 D - 26/11/2019 SOIL	SPA-3 D - 26/11/2019 SOIL	SPB-1 D - 26/11/2019 SOIL	SPB-2 D - 26/11/2019 SOIL	SPB-3 D - 26/11/2019 SOIL
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted	UNITS - mg/kg	SPA-2 D - 26/11/2019 SOIL 28/11/2019	SPA-3 D - 26/11/2019 SOIL 28/11/2019	SPB-1 D - 26/11/2019 SOIL 28/11/2019	SPB-2 D - 26/11/2019 SOIL 28/11/2019	SPB-3 D - 26/11/2019 SOIL 28/11/2019
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed	-	SPA-2 D - 26/11/2019 SOIL 28/11/2019 28/11/2019	SPA-3 D - 26/11/2019 SOIL 28/11/2019 28/11/2019	SPB-1 D - 26/11/2019 SOIL 28/11/2019 28/11/2019	SPB-2 D - 26/11/2019 SOIL 28/11/2019 28/11/2019	SPB-3 D - 26/11/2019 SOIL 28/11/2019 28/11/2019
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9	- - mg/kg	SPA-2 D - 26/11/2019 SOIL 28/11/2019 28/11/2019 <25	SPA-3 D - 26/11/2019 SOIL 28/11/2019 28/11/2019 <25	SPB-1 D - 26/11/2019 SOIL 28/11/2019 28/11/2019 <25	SPB-2 D - 26/11/2019 SOIL 28/11/2019 28/11/2019 <25	SPB-3 D - 26/11/2019 SOIL 28/11/2019 28/11/2019 <25
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉ TRH C ₆ - C ₁₀	- - mg/kg mg/kg	SPA-2 D - 26/11/2019 SOIL 28/11/2019 28/11/2019 <25 <25	SPA-3 D - 26/11/2019 SOIL 28/11/2019 28/11/2019 <25 <25	SPB-1 D - 26/11/2019 SOIL 28/11/2019 28/11/2019 <25 <25	SPB-2 D - 26/11/2019 SOIL 28/11/2019 28/11/2019 <25 <25	SPB-3 D - 26/11/2019 SOIL 28/11/2019 28/11/2019 28/11/2019 <25 <25 <25 <25 <25 <0.2
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 less BTEX (F1)	- - mg/kg mg/kg mg/kg	SPA-2 D - 26/11/2019 SOIL 28/11/2019 28/11/2019 <25 <25 <25	SPA-3 D - 26/11/2019 SOIL 28/11/2019 28/11/2019 <25 <25 <25	SPB-1 D - 26/11/2019 SOIL 28/11/2019 28/11/2019 <25 <25 <25 <25	SPB-2 D - 26/11/2019 SOIL 28/11/2019 28/11/2019 <25 <25 <25	SPB-3 D - 26/11/2019 SOIL 28/11/2019 28/11/2019 <25 <25 <25
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉ TRH C ₆ - C ₁₀ vTPH C ₆ - C ₁₀ less BTEX (F1) Benzene	- - mg/kg mg/kg mg/kg mg/kg	SPA-2 D - 26/11/2019 SOIL 28/11/2019 28/11/2019 <25 <25 <25 <25 <0.2	SPA-3 D - 26/11/2019 SOIL 28/11/2019 28/11/2019 <25 <25 <25 <25 <0.2	SPB-1 D - 26/11/2019 SOIL 28/11/2019 28/11/2019 <25 <25 <25 <25 <0.2	SPB-2 D - 26/11/2019 SOIL 28/11/2019 28/11/2019 <25 <25 <25 <25 <0.2	SPB-3 D - 26/11/2019 SOIL 28/11/2019 28/11/2019 28/11/2019 <25 <25 <25 <25 <25 <0.2
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 less BTEX (F1) Benzene Toluene	- - mg/kg mg/kg mg/kg mg/kg mg/kg	SPA-2 D - 26/11/2019 SOIL 28/11/2019 28/11/2019 <25 <25 <25 <25 <0.2 <0.2	SPA-3 D - 26/11/2019 SOIL 28/11/2019 28/11/2019 <25	SPB-1 D - 26/11/2019 SOIL 28/11/2019 28/11/2019 <25	SPB-2 D - 26/11/2019 SOIL 28/11/2019 28/11/2019 <25	SPB-3 D - 26/11/2019 SOIL 28/11/2019 28/11/2019 <25 <25 <25 <25 <0.2 <0.2
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 less BTEX (F1) Benzene Toluene Ethylbenzene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	SPA-2 D - 26/11/2019 SOIL 28/11/2019 28/11/2019 <25 <25 <25 <0.2 <0.2 <0.5 <1	SPA-3 D - 26/11/2019 SOIL 28/11/2019 28/11/2019 <25/ <25 <25 <25 <0.2 <0.2 <0.5	SPB-1 D - 26/11/2019 SOIL 28/11/2019 28/11/2019 <25/ <25 <25 <25 <0.2 <0.2 <0.5	SPB-2 D - 26/11/2019 SOIL 28/11/2019 28/11/2019 <28/11/2019 <25 <25 <25 <25 <0.2 <0.2	SPB-3 D - 26/11/2019 SOIL 28/11/2019 28/11/2019 28/11/2019 <25 <25 <25 <0.2 <0.2 <0.5 <1
Our ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xylene	- - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	SPA-2 D - 26/11/2019 SOIL 28/11/2019 28/11/2019 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	SPA-3 D - 26/11/2019 SOIL 28/11/2019 28/11/2019 28/25 <25	SPB-1 D - 26/11/2019 SOIL 28/11/2019 28/11/2019 <25/11/2019	SPB-2 D - 26/11/2019 SOIL 28/11/2019 28/11/2019 <25	SPB-3 D - 26/11/2019 SOIL 28/11/2019 28/11/2019 28/11/2019 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <1 <2
Our ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xyleneo-Xylene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	SPA-2 D - 26/11/2019 SOIL 28/11/2019 28/11/2019 28/11/2019 28/25 <25	SPA-3 D - 26/11/2019 SOIL 28/11/2019 28/11/2019 28/11/2019 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <1 <2 <1	SPB-1 D - 26/11/2019 SOIL 28/11/2019 28/11/2019 28/11/2019 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <1 <2 <1	SPB-2 D - 26/11/2019 SOIL 28/11/2019 28/11/2019 28/11/2019 28/21/2019 <25	SPB-3 D - 26/11/2019 SOIL 28/11/2019 28/11/2019 28/11/2019 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		231726-17
Your Reference	UNITS	BD1/20191126
Depth		-
Date Sampled		26/11/2019
Type of sample		SOIL
Date extracted	-	28/11/2019
Date analysed	-	28/11/2019
TRH C ₆ - C ₉	mg/kg	<25
TRH C ₆ - C ₁₀	mg/kg	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Total +ve Xylenes	mg/kg	<3
Surrogate aaa-Trifluorotoluene	%	86

svTRH (C10-C40) in Soil						
Our Reference		231726-1	231726-2	231726-3	231726-4	231726-6
Your Reference	UNITS	TP9	TP9	TP10	TP10	SPA-1 D
Depth		0-0.3	0.3-0.5	0-0.3	0.3-0.5	-
Date Sampled		26/11/2019	26/11/2019	26/11/2019	26/11/2019	26/11/2019
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date extracted	-	28/11/2019	28/11/2019	28/11/2019	28/11/2019	28/11/2019
Date analysed	-	29/11/2019	29/11/2019	29/11/2019	29/11/2019	29/11/2019
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	100	<100	<100
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	110	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	110	<50	<50
Surrogate o-Terphenyl	%	88	86	78	84	84
svTRH (C10-C40) in Soil		·				
Our Reference		231726-8	231726-10	231726-12	231726-14	231726-16
Your Reference	UNITS	SPA-2 D	SPA-3 D	SPB-1 D	SPB-2 D	SPB-3 D
Depth		-	-	-	-	-
Date Sampled		26/11/2019	26/11/2019	26/11/2019	26/11/2019	26/11/2019
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date extracted	-	28/11/2019	28/11/2019	28/11/2019	28/11/2019	28/11/2019
Date analysed	-	29/11/2019	29/11/2019	29/11/2019	29/11/2019	29/11/2019
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50

<100

<100

<50

<50

<100

<100

<50

82

<100

<100

<50

<50

<100

<100

<50

82

<100

<100

<50

<50

<100

<100

<50

85

<100

<100

<50

<50

<100

<100

<50

83

<100

<100

<50

<50

<100

<100

<50

84

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

%

TRH C15 - C28

TRH C₂₉ - C₃₆

TRH >C10 -C16

TRH >C16 -C34

TRH >C34 -C40

Total +ve TRH (>C10-C40)

Surrogate o-Terphenyl

TRH >C10 - C16 less Naphthalene (F2)

svTRH (C10-C40) in Soil		
Our Reference		231726-17
Your Reference	UNITS	BD1/20191126
Depth		-
Date Sampled		26/11/2019
Type of sample		SOIL
Date extracted	-	28/11/2019
Date analysed	-	29/11/2019
TRH C10 - C14	mg/kg	<50
TRH C15 - C28	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100
TRH >C34 -C40	mg/kg	<100
Total +ve TRH (>C10-C40)	mg/kg	<50
Surrogate o-Terphenyl	%	86

PAHs in Soil						
Our Reference		231726-1	231726-2	231726-3	231726-4	231726-6
Your Reference	UNITS	TP9	TP9	TP10	TP10	SPA-1 D
Depth		0-0.3	0.3-0.5	0-0.3	0.3-0.5	-
Date Sampled		26/11/2019	26/11/2019	26/11/2019	26/11/2019	26/11/2019
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date extracted	-	28/11/2019	28/11/2019	28/11/2019	28/11/2019	28/11/2019
Date analysed	-	29/11/2019	29/11/2019	29/11/2019	29/11/2019	29/11/2019
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	84	84	83	83	82

PAHs in Soil						
Our Reference		231726-8	231726-10	231726-12	231726-14	231726-16
Your Reference	UNITS	SPA-2 D	SPA-3 D	SPB-1 D	SPB-2 D	SPB-3 D
Depth		-	-	-	-	-
Date Sampled		26/11/2019	26/11/2019	26/11/2019	26/11/2019	26/11/2019
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date extracted	-	28/11/2019	28/11/2019	28/11/2019	28/11/2019	28/11/2019
Date analysed	-	29/11/2019	29/11/2019	29/11/2019	29/11/2019	29/11/2019
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	83	84	83	83	83

PAHs in Soil		
Our Reference		231726-17
Your Reference	UNITS	BD1/20191126
Depth		-
Date Sampled		26/11/2019
Type of sample		SOIL
Date extracted	-	28/11/2019
Date analysed	-	29/11/2019
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	<0.1
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	<0.1
Pyrene	mg/kg	<0.1
Benzo(a)anthracene	mg/kg	<0.1
Chrysene	mg/kg	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2
Benzo(a)pyrene	mg/kg	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1
Total +ve PAH's	mg/kg	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5
Surrogate p-Terphenyl-d14	%	84

Organochlorine Pesticides in soil			
Our Reference		231726-1	231726-3
Your Reference	UNITS	TP9	TP10
Depth		0-0.3	0-0.3
Date Sampled		26/11/2019	26/11/2019
Type of sample		SOIL	SOIL
Date extracted	-	28/11/2019	28/11/2019
Date analysed	-	29/11/2019	29/11/2019
alpha-BHC	mg/kg	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1
pp-DDE	mg/kg	0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	0.1	<0.1
Surrogate TCMX	%	81	79

Organophosphorus Pesticides in Soil			
Our Reference		231726-1	231726-3
Your Reference	UNITS	TP9	TP10
Depth		0-0.3	0-0.3
Date Sampled		26/11/2019	26/11/2019
Type of sample		SOIL	SOIL
Date extracted	-	28/11/2019	28/11/2019
Date analysed	-	29/11/2019	29/11/2019
Dichlorvos	mg/kg	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1
Surrogate TCMX	%	81	79

PCBs in Soil			
Our Reference		231726-1	231726-3
Your Reference	UNITS	TP9	TP10
Depth		0-0.3	0-0.3
Date Sampled		26/11/2019	26/11/2019
Type of sample		SOIL	SOIL
Date extracted	-	28/11/2019	28/11/2019
Date analysed	-	29/11/2019	29/11/2019
Aroclor 1016	mg/kg	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1
Surrogate TCMX	%	81	79

Acid Extractable metals in soil						
Our Reference		231726-1	231726-2	231726-3	231726-5	231726-7
Your Reference	UNITS	TP9	TP9	TP10	SPA-1 C	SPA-2 C
Depth		0-0.3	0.3-0.5	0-0.3	-	-
Date Sampled		26/11/2019	26/11/2019	26/11/2019	26/11/2019	26/11/2019
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date prepared	-	28/11/2019	28/11/2019	28/11/2019	28/11/2019	28/11/2019
Date analysed	-	28/11/2019	28/11/2019	28/11/2019	28/11/2019	28/11/2019
Arsenic	mg/kg	10	9	6	4	5
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	59	28	23	9	10
Copper	mg/kg	24	16	15	37	39
Lead	mg/kg	32	18	45	15	23
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	10	5	7	20	35
Zinc	mg/kg	46	26	55	80	110

Acid Extractable metals in soil						
Our Reference		231726-9	231726-11	231726-13	231726-15	231726-17
Your Reference	UNITS	SPA-3 C	SPB-1 C	SPB-2 C	SPB-3 C	BD1/20191126
Depth		-	-	-	-	-
Date Sampled		26/11/2019	26/11/2019	26/11/2019	26/11/2019	26/11/2019
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date prepared	-	28/11/2019	28/11/2019	28/11/2019	28/11/2019	28/11/2019
Date analysed	-	28/11/2019	28/11/2019	28/11/2019	28/11/2019	28/11/2019
Arsenic	mg/kg	6	8	9	7	11
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	11	10	8	9	110
Copper	mg/kg	39	31	31	25	42
Lead	mg/kg	18	23	18	15	39
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	0.2
Nickel	mg/kg	24	18	21	17	7
Zinc	mg/kg	98	69	79	56	68

Misc Soil - Inorg			
Our Reference		231726-1	231726-3
Your Reference	UNITS	TP9	TP10
Depth		0-0.3	0-0.3
Date Sampled		26/11/2019	26/11/2019
Type of sample		SOIL	SOIL
Date prepared	-	28/11/2019	28/11/2019
Date analysed	-	28/11/2019	28/11/2019
Total Phenolics (as Phenol)	mg/kg	<5	<5

Misc Inorg - Soil						
Our Reference		231726-5	231726-7	231726-9	231726-11	231726-13
Your Reference	UNITS	SPA-1 C	SPA-2 C	SPA-3 C	SPB-1 C	SPB-2 C
Depth		-	-	-	-	-
Date Sampled		26/11/2019	26/11/2019	26/11/2019	26/11/2019	26/11/2019
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date prepared	-	29/11/2019	29/11/2019	29/11/2019	29/11/2019	29/11/2019
Date analysed	-	29/11/2019	29/11/2019	29/11/2019	29/11/2019	29/11/2019
pH 1:5 soil:water	pH Units	9.1	9.2	9.2	8.4	8.3
Electrical Conductivity 1:5 soil:water	µS/cm	220	170	280	310	310

Misc Inorg - Soil		
Our Reference		231726-15
Your Reference	UNITS	SPB-3 C
Depth		-
Date Sampled		26/11/2019
Type of sample		SOIL
Date prepared	-	29/11/2019
Date analysed	-	29/11/2019
pH 1:5 soil:water	pH Units	8.4
Electrical Conductivity 1:5 soil:water	µS/cm	230

Moisture						
Our Reference		231726-1	231726-2	231726-3	231726-4	231726-5
Your Reference	UNITS	TP9	TP9	TP10	TP10	SPA-1 C
	UNITS	0-0.3	0.3-0.5	0-0.3	0.3-0.5	51 A-1 C
Depth						-
Date Sampled		26/11/2019	26/11/2019	26/11/2019	26/11/2019	26/11/2019
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date prepared	-	28/11/2019	28/11/2019	28/11/2019	28/11/2019	28/11/2019
Date analysed	-	28/11/2019	28/11/2019	28/11/2019	28/11/2019	28/11/2019
Moisture	%	7.2	12	7.6	11	11
Moisture						
Our Reference		231726-6	231726-7	231726-8	231726-9	231726-10
Your Reference	UNITS	SPA-1 D	SPA-2 C	SPA-2 D	SPA-3 C	SPA-3 D
Depth		-	-	-	-	-
Date Sampled		26/11/2019	26/11/2019	26/11/2019	26/11/2019	26/11/2019
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date prepared	-	28/11/2019	28/11/2019	28/11/2019	28/11/2019	28/11/2019
Date analysed	-	28/11/2019	28/11/2019	28/11/2019	28/11/2019	28/11/2019
Moisture	%	11	13	13	12	13
Moisture		•	1			
Our Reference		231726-11	231726-12	231726-13	231726-14	231726-15
Your Reference	UNITS	SPB-1 C	SPB-1 D	SPB-2 C	SPB-2 D	SPB-3 C
Depth		-	-	-	-	-
Date Sampled		26/11/2019	26/11/2019	26/11/2019	26/11/2019	26/11/2019
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date prepared	-	28/11/2019	28/11/2019	28/11/2019	28/11/2019	28/11/2019
Date analysed	-	28/11/2019	28/11/2019	28/11/2019	28/11/2019	28/11/2019
Moisture	%	12	12	11	11	11
Moisture	%	12	12	11	11	11
Moisture	%			11	11	11
Moisture Our Reference		231726-16	231726-17	11	11	11
Moisture Our Reference Your Reference	% UNITS			11	11	11
Moisture Our Reference Your Reference Depth		231726-16 SPB-3 D -	231726-17 BD1/20191126 -	11	11	11
Moisture Our Reference Your Reference		231726-16	231726-17	11		11

28/11/2019

28/11/2019

12

-

-

%

28/11/2019

28/11/2019

5.2

Date prepared

Date analysed

Moisture

Asbestos ID - soils NEPM				
Our Reference		231726-1	231726-3	231726-4
Your Reference	UNITS	TP9	TP10	TP10
Depth		0-0.3	0-0.3	0.3-0.5
Date Sampled		26/11/2019	26/11/2019	26/11/2019
Type of sample		SOIL	SOIL	SOIL
Date analysed	-	02/12/2019	02/12/2019	02/12/2019
Sample mass tested	g	1,120.98	1,044.2	1,125.11
Sample Description	-	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Brown clayey soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg
		Organic fibres detected	Organic fibres detected	Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected	No visible asbestos detected	No visible asbestos detected
ACM >7mm Estimation*	g	-	-	-
FA and AF Estimation*	g	_	_	-
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001

Asbestos ID - soils		
Our Reference		231726-2
Your Reference	UNITS	TP9
Depth		0.3-0.5
Date Sampled		26/11/2019
Type of sample		SOIL
Date analysed	-	02/12/2019
Sample mass tested	g	Approx. 30g
Sample Description	-	Brown clayey soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg
		Organic fibres detected
Trace Analysis	-	No asbestos detected

Asbestos ID - materials		
Our Reference		231726-18
Your Reference	UNITS	ACM-2
Depth		-
Date Sampled		26/11/2019
Type of sample		MATERIAL
Date analysed	-	28/11/2019
Mass / Dimension of Sample	-	70x60x4mm
Sample Description	-	Beige fibre cement material
Asbestos ID in materials	-	Chrysotile asbestos detected Amosite asbestos
		detected
Trace Analysis	-	Not Tested

RTA276 ENM* Foreign Material						
Our Reference		231726-5	231726-7	231726-9	231726-11	231726-13
Your Reference	UNITS	SPA-1 C	SPA-2 C	SPA-3 C	SPB-1 C	SPB-2 C
Depth		-	-	-	-	-
Date Sampled		26/11/2019	26/11/2019	26/11/2019	26/11/2019	26/11/2019
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date prepared	-	29/11/2019	29/11/2019	29/11/2019	29/11/2019	29/11/2019
Date analysed	-	29/11/2019	29/11/2019	29/11/2019	29/11/2019	29/11/2019
Sample Mass Tested	g	5,000	4,500	3,200	4,500	5,300
Foreign Material	%	<0.05	<0.05	<0.05	<0.05	<0.05

RTA276 ENM* Foreign Material		
Our Reference		231726-15
Your Reference	UNITS	SPB-3 C
Depth		-
Date Sampled		26/11/2019
Type of sample		SOIL
Date prepared	-	29/11/2019
Date analysed	-	29/11/2019
Sample Mass Tested	g	4,300
Foreign Material	%	<0.05

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
ASB-001	Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos- Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard AS4964-2004. Results reported denoted with * are outside our scope of NATA accreditation.
	NOTE ^{#1} Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF)
	NOTE ^{#2} The screening level of 0.001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.
	Estimation = Estimated asbestos weight
	Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.
AT-008	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Inorg-080 ENM	This method is based on RTA T276 and as per NSW DECC Resource Recovery Exemption Guidelines and correspondence. It includes rubber, plastic, bitumen, paper, cloth, paint and wood (Note wood is construction timber only, naturally occuring wood/twigs/roots are excluded). RTA T276 requires at least 6kg of sample for this test.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.

Method ID	Methodology Summary
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-012/017	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS.
Org-012/017	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS and/or GC-MS/MS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-012/017	 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" li="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" teq="" teqs="" that="" the="" this="" to=""> 2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" li="" more="" negative="" pahs="" pql.<="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""> 3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql "total="" +ve="" a="" above.="" and="" approaches="" are="" between="" conservative="" half="" hence="" individual="" is="" least="" li="" lowest="" mid-point="" most="" note,="" of="" pahs="" pahs"="" pahs.<="" positive="" pql="" pql.="" reflective="" simply="" stipulated="" sum="" the="" therefore="" total=""> </pql></pql></pql>
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

Method ID	Methodology Summary									
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.									
RTA276	RTA 276 - Modified to Environmental Operations (Waste) - 2005 General Exemption under Part 6, Clause 51A.									
QUALITY CONT	ROL: vTRH	(C6-C10)	BTEXN in Soil			Du		Spike Recovery %		
--------------------------------------	-----------	----------	---------------	------------	---	------------	------------	------------------	------------	------------
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-9	231726-3
Date extracted	-			28/11/2019	1	28/11/2019	28/11/2019		28/11/2019	28/11/2019
Date analysed	-			28/11/2019	1	28/11/2019	28/11/2019		28/11/2019	28/11/2019
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	1	<25	<25	0	94	83
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	1	<25	<25	0	94	83
Benzene	mg/kg	0.2	Org-016	<0.2	1	<0.2	<0.2	0	100	86
Toluene	mg/kg	0.5	Org-016	<0.5	1	<0.5	<0.5	0	96	86
Ethylbenzene	mg/kg	1	Org-016	<1	1	<1	<1	0	80	72
m+p-xylene	mg/kg	2	Org-016	<2	1	<2	<2	0	96	85
o-Xylene	mg/kg	1	Org-016	<1	1	<1	<1	0	97	84
naphthalene	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-016	93	1	80	74	8	90	83

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-9	231726-3	
Date extracted	-			28/11/2019	1	28/11/2019	28/11/2019		28/11/2019	28/11/2019	
Date analysed	-			29/11/2019	1	29/11/2019	29/11/2019		29/11/2019	29/11/2019	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	1	<50	<50	0	100	96	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	1	<100	<100	0	114	110	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	1	<100	<100	0	121	113	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	1	<50	<50	0	100	96	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	1	<100	<100	0	114	110	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	1	<100	<100	0	121	113	
Surrogate o-Terphenyl	%		Org-003	88	1	88	86	2	102	99	

QUALI	TY CONTRC	L: PAHs	in Soil			Du	plicate	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-9	231726-3	
Date extracted	-			28/11/2019	1	28/11/2019	28/11/2019		28/11/2019	28/11/2019	
Date analysed	-			29/11/2019	1	29/11/2019	29/11/2019		29/11/2019	29/11/2019	
Naphthalene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	90	82	
Acenaphthylene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Acenaphthene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Fluorene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	106	100	
Phenanthrene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	90	86	
Anthracene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Fluoranthene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	86	84	
Pyrene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	88	82	
Benzo(a)anthracene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Chrysene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	74	128	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012/017	<0.2	1	<0.2	<0.2	0	[NT]	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-012/017	<0.05	1	<0.05	<0.05	0	112	89	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-012/017	88	1	84	82	2	79	84	

QUALITY CONT	ROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-9	231726-3	
Date extracted	-			28/11/2019	1	28/11/2019	28/11/2019		28/11/2019	28/11/2019	
Date analysed	-			29/11/2019	1	29/11/2019	29/11/2019		29/11/2019	29/11/2019	
alpha-BHC	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	116	109	
НСВ	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
beta-BHC	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	108	100	
gamma-BHC	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Heptachlor	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	90	91	
delta-BHC	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Aldrin	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	94	95	
Heptachlor Epoxide	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	90	91	
gamma-Chlordane	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
alpha-chlordane	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Endosulfan I	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
pp-DDE	mg/kg	0.1	Org-012/017	<0.1	1	0.1	0.1	0	92	91	
Dieldrin	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	96	102	
Endrin	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	90	100	
Endosulfan II	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
pp-DDD	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	94	95	
Endrin Aldehyde	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
pp-DDT	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Endosulfan Sulphate	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	94	100	
Methoxychlor	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Surrogate TCMX	%		Org-012/017	78	1	81	80	1	81	79	

QUALITY CONTRO	L: Organoph	nosphorus	s Pesticides in Soil			Du	plicate		covery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-9	231726-3
Date extracted	-			28/11/2019	1	28/11/2019	28/11/2019		28/11/2019	28/11/2019
Date analysed	-			29/11/2019	1	29/11/2019	29/11/2019		29/11/2019	29/11/2019
Dichlorvos	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	80	100
Dimethoate	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	76	78
Fenitrothion	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	72	80
Malathion	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	126	83
Chlorpyriphos	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	78	80
Parathion	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	86	95
Bromophos-ethyl	mg/kg	0.1	AT-008	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	70	76
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-012/017	78	1	81	80	1	81	79

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-9	231726-3
Date extracted	-			28/11/2019	1	28/11/2019	28/11/2019		28/11/2019	28/11/2019
Date analysed	-			29/11/2019	1	29/11/2019	29/11/2019		29/11/2019	29/11/2019
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	63	67
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-006	78	1	81	80	1	81	79

QUALITY CONT	ROL: Acid E	Extractabl	e metals in soil			Duj	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-9	231726-3	
Date prepared	-			28/11/2019	1	28/11/2019	28/11/2019		28/11/2019	28/11/2019	
Date analysed	-			28/11/2019	1	28/11/2019	28/11/2019		28/11/2019	28/11/2019	
Arsenic	mg/kg	4	Metals-020	<4	1	10	9	11	107	90	
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	103	86	
Chromium	mg/kg	1	Metals-020	<1	1	59	60	2	118	95	
Copper	mg/kg	1	Metals-020	<1	1	24	30	22	109	105	
Lead	mg/kg	1	Metals-020	<1	1	32	38	17	119	96	
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	89	88	
Nickel	mg/kg	1	Metals-020	<1	1	10	10	0	105	91	
Zinc	mg/kg	1	Metals-020	<1	1	46	53	14	108	84	

QUALITY	CONTROL	Misc Soi	l - Inorg			Duj	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-9	[NT]	
Date prepared	-			28/11/2019	[NT]			[NT]	28/11/2019	[NT]	
Date analysed	-			28/11/2019	[NT]			[NT]	28/11/2019	[NT]	
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	<5	[NT]	[NT]	[NT]	[NT]	112	[NT]	

QUALITY	CONTROL	Misc Ino	rg - Soil			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-9	[NT]
Date prepared	-			29/11/2019	9	29/11/2019	29/11/2019		29/11/2019	[NT]
Date analysed	-			29/11/2019	9	29/11/2019	29/11/2019		29/11/2019	[NT]
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	9	9.2	9.3	1	101	[NT]
Electrical Conductivity 1:5 soil:water	µS/cm	1	Inorg-002	<1	9	280	310	10	106	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform Faecal Enterococci & E Coli levels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Asbestos: A portion of the supplied sample was sub-sampled for asbestos

analysis according to Envirolab procedures.

We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container.

Note: Sample 231726-2 was sub-sampled from a jar provided by the client.

Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.

Douglas Partners Geotechnics | Environment | Groundwater

CHAIN OF CUSTODY DESPATCH SHEET

Project No:	86819	0.01			Suburb):	Villawoo	od	_	To:	Env	riroLab		
Project Name:	Detail	ed Site Inve	stigation		Order 1	Number	•				12/	Ashley Sti	reet, Chatswo	od 2067
Project Manage			_		Sample		JJH			Attn:	Aile	en Hie		
Emails:	jack.s	snowd <u>en; j</u> e	oel.james	-hall@doug	laspartn	ers.com	.au			Phone:		9910 62		
Date Required:		day 🖟	24 hours		ours 🗆	72 hou	rs 🛛 🔤	Standard	<u>ď</u>	Email:			<u>olab.com.au</u>	
Prior Storage	🖞 Esk	y 🗹 Fridg	je 🗆 Sh		Do sam	oles contai	n 'potential	' HBM?	Yes 🗹	No 🗆	(If YES, th	en handle, t	transport and stor	e in accordance with FPM HAZID)
		Sampled	Sample Type	Container Type		1	i i		Analytes					•
Sample ID	Lab ID	Date Sam	S - soil W - water	G - glass P - plastic	Combo 8	Combo 3	Combo 3a	ENM Suite	AF/FA	Ashestas				Notes/preservation
TP9/0-0.3	l	26/11/19	S	G/P	x		,		x				Çc	mposite (C) and Discrete (D)
TP9/0.3-0.5	2	26/11/19	S	G			x							amples supplied for ENM suite
TP10/0 *0. 3	3	26/11/19	S	G/P	x		1		x					(eg. SP1-A C and SP1-A D)
TP10/0.3-0.5	4	26/11/19	S	G/P		x			x			<u> </u>	b	ulk plastic composite
SPA-1 (C,D)	5,6	26/11/19	S .	G/P	-		·	x						samples supplied for FM
SPA-2	2,8	26/11/19	S	G/P				x						Envirolab Services
SPA-3	9,10	26/11/19	S	G/P			-	x					ENVIR	Chatswood NSW 2067
SPB-1	11,12	26/11/19	S	G/P			,	x					<u>l dat</u>	<u>10: 231726</u>
SPB-2	13,14	26/11/19	S	G/P			·	x					Cate	Received: 27.11.19
SPB-3	15,16	26/11/19	S	G/P				x				<u> </u>	Time	Received: 13:30
BD1/20191126	17	26/11/19	S	G		x							Temp	ved by: <u>MO</u> : CooyAmbient
ACM-2	18	26/11/19	x	P						X			Cooli	ng: Ice/Kepack rity: Gtac/Broken/None
· · · · · · · · · · · · · · · · · · ·												<u> </u>		li hay
							<u> </u>						+	
`	*						<u> </u>						L	d for all water analytes 🛛
PQL = practica	<u> </u>				to Labor	atory Met	hod Detec	tion Limit		Lab Re	port/Re	, ference l		1726
Metals to Analy Total number of					nquished	l bv:	JJH ,	Transpo	rted to la	 aboratory				<u> </u>
Send Results to	<u>o:</u> D	ouglas Part	ners Pty Lt	td Add	ress:							Phone		Fax:
Signed:	V	<u>has</u>		Received b	<u>iy: Mi</u>	mae	Ope	ECS			Date &	1 ime: 2	27-11-19 13	30

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Joel James-Hall, Jack Snowden

Sample Login Details	
Your reference	86819.01, Villawood
Envirolab Reference	231726
Date Sample Received	27/11/2019
Date Instructions Received	27/11/2019
Date Results Expected to be Reported	04/12/2019

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	17 SOIL, 1 MATERIAL
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	16.8
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Acid Extractable metalsin soil	Misc Soil - Inorg	Misc Inorg - Soil	Asbestos ID - soils NEPM	Asbestos ID - soils	Asbestos ID - materials	RTA276 ENM*Foreign Material
TP9-0-0.3	✓	✓	✓	✓	✓	✓	✓	✓		✓			
TP9-0.3-0.5	✓	\checkmark	✓				✓				✓		
TP10-0-0.3	\checkmark	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark			
TP10-0.3-0.5	\checkmark	\checkmark	✓							\checkmark			
SPA-1 C							\checkmark		\checkmark				\checkmark
SPA-1 D	\checkmark	\checkmark	\checkmark										
SPA-2 C							\checkmark		\checkmark				\checkmark
SPA-2 D	\checkmark	\checkmark	\checkmark										
SPA-3 C							✓		✓				✓
SPA-3 D	✓	✓	✓										
SPB-1 C							✓		✓				✓
SPB-1 D	✓	✓	✓										
SPB-2 C							✓		✓				✓
SPB-2 D	✓	✓	✓										
SPB-3 C							✓		\checkmark				✓
SPB-3 D	✓	✓	✓										
BD1/20191126	1	✓	✓				✓						
ACM-2												✓	

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

CERTIFICATE OF ANALYSIS 231726-A

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Celine Li, Jack Snowden
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	86819.01, Villawood
Number of Samples	17 SOIL, 1 MATERIAL
Date samples received	27/11/2019
Date completed instructions received	03/12/2019

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details	
Date results requested by	10/12/2019
Date of Issue	06/12/2019
NATA Accreditation Number 29	01. This document shall not be reproduced except in full.
Accredited for compliance with	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By Loren Bardwell, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

Metals in TCLP USEPA1311		
Our Reference		231726-A-17
Your Reference	UNITS	BD1/20191126
Depth		-
Date Sampled		26/11/2019
Type of sample		SOIL
Date extracted	-	04/12/2019
Date analysed	-	04/12/2019
pH of soil for fluid# determ.	pH units	6.8
pH of soil TCLP (after HCl)	pH units	2.0
Extraction fluid used	-	1
pH of final Leachate	pH units	5.0
Chromium in TCLP	mg/L	<0.01

Method ID	Methodology Summary
EXTRACT.7	Toxicity Characteristic Leaching Procedure (TCLP) using Zero Headspace Extraction (zHE) using AS4439 and USEPA 1311.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using in house method INORG-004. Please note that the mass used may be scaled down from the default based on sample mass available.
Metals-020 ICP-AES	Determination of various metals by ICP-AES.

QUALITY CONTROL: Metals in TCLP USEPA1311					Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			04/12/2019	[NT]		[NT]	[NT]	04/12/2019	
Date analysed	-			04/12/2019	[NT]		[NT]	[NT]	04/12/2019	
Chromium in TCLP	mg/L	0.01	Metals-020 ICP- AES	<0.01	[NT]	[NT]	[NT]	[NT]	102	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform Faecal Enterococci. & E Coli levels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Ken Nguyen

From:	Celine Li <celine.li@douglaspartners.com.au></celine.li@douglaspartners.com.au>	231726-A
Sent:	Tuesday, 3 December 2019 9:16 AM	Duringlal
To:	Ken Nguyen	Due: 10/12/19
Cc:	Jack Snowden	011-0-
Subject:	Results for Registration 231726 86819.01, Villawood -TCLP	Std TAT
Attachments:	231726-[R00].pdf	

Hi Ken,

 $(\mathbf{\hat{n}})$

Could we please schedule TCLP test on the sample BD1/20191126 for chromium? Standard turnaround time please.

Cheers,

Celine Li | Environmental Engineer/Scientist Douglas Partners Pty Ltd | ABN 75 053 980 117 | www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 | PO Box 472 West Ryde NSW 1685 P: 02 9809 0666 | M: 0428 199 646 | E: Celine.Li@douglaspartners.com.au

FINANCIAL REVIEW

CLIENT CHOICE AWARDS 2019 WINNER beaton

AW

This email is confidential. If you are not the intended recipient, please notify us immediately and be aware that any disclosure, copying, distribution or use of the contents of this information is prohibited. Please note that the company does not make any commitment through emails not confirmed by fax or letter.

Disclaimer

The information contained in this communication from the sender is confidential. It is intended solely for use by the recipient and others authorized to receive it. If you are not the recipient, you are hereby notified that any disclosure, copying, distribution or taking action in relation of the contents of this information is strictly prohibited and may be unlawful.

This email has been scanned for viruses and malware, and may have been automatically archived by **Mimecast Ltd**, an innovator in Software as a Service (SaaS) for business. Providing a **safer** and **more useful** place for your human generated data. Specializing in; Security, archiving and compliance. To find out more **Click Here**.

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Celine Li, Jack Snowden

Sample Login Details	
Your reference	86819.01, Villawood
Envirolab Reference	231726-A
Date Sample Received	27/11/2019
Date Instructions Received	03/12/2019
Date Results Expected to be Reported	10/12/2019

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	17 SOIL, 1 MATERIAL
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	16.8
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Sample ID	Metals in TCLP USEPA1311	On Hold
TP9-0-0.3		\checkmark
TP9-0.3-0.5		✓ ✓ ✓ ✓ ✓ ✓
TP10-0-0.3		✓
TP10-0.3-0.5		\checkmark
SPA-1 C		\checkmark
SPA-1 D		\checkmark
SPA-2 C		✓
SPA-2 D		✓ ✓
SPA-3 C		\checkmark
SPA-3 D		\checkmark
SPB-1 C		✓ ✓ ✓ ✓ ✓
SPB-1 D		\checkmark
SPB-2 C		✓
SPB-2 D		\checkmark
SPB-3 C		✓
SPB-3 D		\checkmark
BD1/20191126	\checkmark	
ACM-2		\checkmark

The '\' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

CERTIFICATE OF ANALYSIS 233656

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Jack Snowden
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	<u>86819.01, Kamira Court</u>
Number of Samples	18 SOIL, 1 MATERIAL
Date samples received	20/12/2019
Date completed instructions received	20/12/2019

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

Date results requested by Date of Issue

Steven Luong, Organics Supervisor

06/01/2020 31/12/2019

NATA Accreditation Number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Lucy Zhu, Aida Marner Authorised by Asbestos Approved Signatory: Lucy Zhu **Results Approved By** Diego Bigolin, Team Leader, Inorganics Josh Williams, Senior Chemist Loren Bardwell, Senior Chemist Lucy Zhu, Senior Asbestos Analyst Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		233656-1	233656-2	233656-3	233656-4	233656-5
Your Reference	UNITS	MW1	MW1	MW2	MW2	MW2
Depth		0-0.2	0.3-0.5	0-0.2	0.3-0.5	0.8-1.0
Date Sampled		17/12/2019	17/12/2019	17/12/2019	17/12/2019	17/12/2019
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date extracted	-	23/12/2019	23/12/2019	23/12/2019	23/12/2019	23/12/2019
Date analysed	-	25/12/2019	25/12/2019	25/12/2019	25/12/2019	25/12/2019
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	110	108	110	106	108
vTRH(C6-C10)/BTEXN in Soil						
Our Reference		233656-7	233656-8	233656-9	233656-10	233656-11
Our Reference Your Reference	UNITS	233656-7 MW3	233656-8 MW3	233656-9 BH1	233656-10 BH1	233656-11 BH1
	UNITS					
Your Reference	UNITS	MW3	MW3	BH1	BH1	BH1
Your Reference Depth	UNITS	MW3 0-0.2	MW3 0.8-1.0	BH1 0.05-0.15	BH1 0.3-0.5	BH1 0.8-1.0
Your Reference Depth Date Sampled	UNITS -	MW3 0-0.2 17/12/2019	MW3 0.8-1.0 17/12/2019	BH1 0.05-0.15 17/12/2019	BH1 0.3-0.5 17/12/2019	BH1 0.8-1.0 17/12/2019
Your Reference Depth Date Sampled Type of sample	UNITS - -	MW3 0-0.2 17/12/2019 SOIL	MW3 0.8-1.0 17/12/2019 SOIL	BH1 0.05-0.15 17/12/2019 SOIL	BH1 0.3-0.5 17/12/2019 SOIL	BH1 0.8-1.0 17/12/2019 SOIL
Your Reference Depth Date Sampled Type of sample Date extracted	UNITS - - mg/kg	MW3 0-0.2 17/12/2019 SOIL 23/12/2019	MW3 0.8-1.0 17/12/2019 SOIL 23/12/2019	BH1 0.05-0.15 17/12/2019 SOIL 23/12/2019	BH1 0.3-0.5 17/12/2019 SOIL 23/12/2019	BH1 0.8-1.0 17/12/2019 SOIL 23/12/2019
Your Reference Depth Date Sampled Type of sample Date extracted Date analysed	-	MW3 0-0.2 17/12/2019 SOIL 23/12/2019 25/12/2019	MW3 0.8-1.0 17/12/2019 SOIL 23/12/2019 25/12/2019	BH1 0.05-0.15 17/12/2019 SOIL 23/12/2019 25/12/2019	BH1 0.3-0.5 17/12/2019 SOIL 23/12/2019 25/12/2019	BH1 0.8-1.0 17/12/2019 SOIL 23/12/2019 25/12/2019
Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9	- - mg/kg	MW3 0-0.2 17/12/2019 SOIL 23/12/2019 25/12/2019 <25	MW3 0.8-1.0 17/12/2019 SOIL 23/12/2019 25/12/2019 <25	BH1 0.05-0.15 17/12/2019 SOIL 23/12/2019 25/12/2019 <25	BH1 0.3-0.5 17/12/2019 SOIL 23/12/2019 25/12/2019 <25	BH1 0.8-1.0 17/12/2019 SOIL 23/12/2019 25/12/2019 <25
Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉ TRH C ₆ - C ₁₀	- - mg/kg mg/kg	MW3 0-0.2 17/12/2019 SOIL 23/12/2019 25/12/2019 <25 <25	MW3 0.8-1.0 17/12/2019 SOIL 23/12/2019 25/12/2019 <25 <25	BH1 0.05-0.15 17/12/2019 SOIL 23/12/2019 25/12/2019 <25 <25	BH1 0.3-0.5 17/12/2019 SOIL 23/12/2019 25/12/2019 <25 <25	BH1 0.8-1.0 17/12/2019 SOIL 23/12/2019 25/12/2019 <25 <25
Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 less BTEX (F1)	- - mg/kg mg/kg mg/kg	MW3 0-0.2 17/12/2019 SOIL 23/12/2019 25/12/2019 <25 <25 <25	MW3 0.8-1.0 17/12/2019 SOIL 23/12/2019 25/12/2019 <25 <25 <25 <25	BH1 0.05-0.15 17/12/2019 SOIL 23/12/2019 25/12/2019 <25 <25 <25 <25	BH1 0.3-0.5 17/12/2019 SOIL 23/12/2019 25/12/2019 <25 <25 <25	BH1 0.8-1.0 17/12/2019 SOIL 23/12/2019 25/12/2019 <25 <25 <25 <25
Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1) Benzene	- - mg/kg mg/kg mg/kg mg/kg	MW3 0-0.2 17/12/2019 SOIL 23/12/2019 25/12/2019 <25 <25 <25 <25 <25 <25	MW3 0.8-1.0 17/12/2019 SOIL 23/12/2019 25/12/2019 <25 <25 <25 <25 <25 <25	BH1 0.05-0.15 17/12/2019 SOIL 23/12/2019 25/12/2019 <25 <25 <25 <25 <25 <0.2	BH1 0.3-0.5 17/12/2019 SOIL 23/12/2019 25/12/2019 <25 <25 <25 <25 <25	BH1 0.8-1.0 17/12/2019 SOIL 23/12/2019 25/12/2019 <25 <25 <25 <25 <25 <25
Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 less BTEX (F1) Benzene Toluene	- - mg/kg mg/kg mg/kg mg/kg mg/kg	MW3 0-0.2 17/12/2019 SOIL 23/12/2019 25/12/2019 <25 <25 <25 <25 <25 <0.2 <0.2	MW3 0.8-1.0 17/12/2019 SOIL 23/12/2019 25/12/2019 <25 <25 <25 <25 <25 <0.2 <0.2 <0.5	BH1 0.05-0.15 17/12/2019 SOIL 23/12/2019 25/12/2019 <25 <25 <25 <25 <25 <0.2 <0.2	BH1 0.3-0.5 17/12/2019 SOIL 23/12/2019 25/12/2019 <25 <25 <25 <25 <25 <0.2	BH1 0.8-1.0 17/12/2019 SOIL 23/12/2019 25/12/2019 <25 <25 <25 <25 <25 <0.2 <0.2 <0.5
Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH $C_6 - C_9$ TRH $C_6 - C_10$ vTPH $C_6 - C_{10}$ less BTEX (F1) Benzene Toluene Ethylbenzene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	MW3 0-0.2 17/12/2019 SOIL 23/12/2019 25/12/2019 <25 <25 <25 <25 <0.2 <0.2 <0.5	MW3 0.8-1.0 17/12/2019 SOIL 23/12/2019 25/12/2019 <25/ <25 <25 <25 <25 <0.2 <0.2 <0.5	BH1 0.05-0.15 17/12/2019 SOIL 23/12/2019 25/12/2019 <25/ <25 <25 <25 <25 <0.2 <0.2 <0.5	BH1 0.3-0.5 17/12/2019 SOIL 23/12/2019 25/12/2019 <25 <25 <25 <25 <25 <0.2 <0.2	BH1 0.8-1.0 17/12/2019 SOIL 23/12/2019 25/12/2019 <25/ <25 <25 <25 <25 <0.2 <0.2 <0.5
Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 less BTEX (F1) Benzene Toluene Ethylbenzene m+p-xylene	- - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	MW3 0-0.2 17/12/2019 SOIL 23/12/2019 25/12/2019 <25/ <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	MW3 0.8-1.0 17/12/2019 SOIL 23/12/2019 25/12/2019 <25/ <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	BH1 0.05-0.15 17/12/2019 SOIL 23/12/2019 25/12/2019 <25/ <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <1 <2	BH1 0.3-0.5 17/12/2019 SOIL 23/12/2019 25/12/2019 <25/ <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	BH1 0.8-1.0 17/12/2019 SOIL 23/12/2019 25/12/2019 <25/ <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <1 <2
Your Reference Depth Date Sampled Type of sample Date extracted Date extracted Date analysed TRH C6 - C9 TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 Isss BTEX (F1) Benzene Toluene Ethylbenzene m+p-xylene o-Xylene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	MW3 0-0.2 17/12/2019 SOIL 23/12/2019 25/12/2019 <25/25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1 <2 <1	MW3 0.8-1.0 17/12/2019 SOIL 23/12/2019 25/12/2019 <25/25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1	BH1 0.05-0.15 17/12/2019 SOIL 23/12/2019 25/12/2019 <25/25 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <1 <2 <1	BH1 0.3-0.5 17/12/2019 SOIL 23/12/2019 25/12/2019 <25/25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <	BH1 0.8-1.0 17/12/2019 SOIL 23/12/2019 25/12/2019 <25/2019 <25/2019 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <1 <2 <1

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		233656-12	233656-13	233656-14	233656-15	233656-16
Your Reference	UNITS	BH2	BH2	BH2	BH3	BH3
Depth		0.05-0.15	0.3-0.5	0.8-1.0	03-0.5	0.8-1.0
Date Sampled		17/12/2019	17/12/2019	17/12/2019	17/12/2019	17/12/2019
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date extracted	-	23/12/2019	23/12/2019	23/12/2019	23/12/2019	23/12/2019
Date analysed	-	25/12/2019	25/12/2019	25/12/2019	25/12/2019	25/12/2019
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	108	106	95	107	105

vTRH(C6-C10)/BTEXN in Soil				
Our Reference		233656-17	233656-18	233656-19
Your Reference	UNITS	BD3/20191217	TS	ТВ
Depth		-	-	-
Date Sampled		17/12/2019	17/12/2019	17/12/2019
Type of sample		SOIL	SOIL	SOIL
Date extracted	-	23/12/2019	23/12/2019	23/12/2019
Date analysed	-	25/12/2019	25/12/2019	25/12/2019
TRH C6 - C9	mg/kg	<25		<25
TRH C ₆ - C ₁₀	mg/kg	<25		<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25		<25
Benzene	mg/kg	<0.2	95%	<0.2
Toluene	mg/kg	<0.5	96%	<0.5
Ethylbenzene	mg/kg	<1	90%	<1
m+p-xylene	mg/kg	<2	89%	<2
o-Xylene	mg/kg	<1	90%	<1
naphthalene	mg/kg	<1		<1
Total +ve Xylenes	mg/kg	<3		<3
Surrogate aaa-Trifluorotoluene	%	107	96	109

Our Reference		233656-1	233656-2	233656-3	233656-4	233656-5
Your Reference	UNITS	MW1	MW1	MW2	MW2	MW2
Depth		0-0.2	0.3-0.5	0-0.2	0.3-0.5	0.8-1.0
Date Sampled		17/12/2019	17/12/2019	17/12/2019	17/12/2019	17/12/2019
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date extracted	-	23/12/2019	23/12/2019	23/12/2019	23/12/2019	23/12/2019
Date analysed	-	23/12/2019	23/12/2019	23/12/2019	23/12/2019	24/12/2019
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	160	<100	<100
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	140	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	140	<50	<50
Surrogate o-Terphenyl	%	80	87	80	78	89

SVIRT (C10-C40) IN SOIL						
Our Reference		233656-7	233656-8	233656-9	233656-10	233656-11
Your Reference	UNITS	MW3	MW3	BH1	BH1	BH1
Depth		0-0.2	0.8-1.0	0.05-0.15	0.3-0.5	0.8-1.0
Date Sampled		17/12/2019	17/12/2019	17/12/2019	17/12/2019	17/12/2019
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date extracted	-	23/12/2019	23/12/2019	23/12/2019	23/12/2019	23/12/2019
Date analysed	-	24/12/2019	24/12/2019	24/12/2019	24/12/2019	24/12/2019
TRH C ₁₀ - C ₁₄	mg/kg	54	<50	58	<50	59
TRH C ₁₅ - C ₂₈	mg/kg	130	<100	140	<100	300
TRH C ₂₉ - C ₃₆	mg/kg	150	<100	250	<100	840
TRH >C ₁₀ -C ₁₆	mg/kg	61	<50	62	<50	64
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	61	<50	62	<50	64
TRH >C ₁₆ -C ₃₄	mg/kg	200	<100	240	<100	740
TRH >C ₃₄ -C ₄₀	mg/kg	110	<100	380	<100	1,100
Total +ve TRH (>C10-C40)	mg/kg	380	<50	680	<50	1,900
Surrogate o-Terphenyl	%	84	78	94	89	91

svTRH (C10-C40) in Soil						
Our Reference		233656-12	233656-13	233656-14	233656-15	233656-16
Your Reference	UNITS	BH2	BH2	BH2	BH3	BH3
Depth		0.05-0.15	0.3-0.5	0.8-1.0	03-0.5	0.8-1.0
Date Sampled		17/12/2019	17/12/2019	17/12/2019	17/12/2019	17/12/2019
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date extracted	-	23/12/2019	23/12/2019	23/12/2019	23/12/2019	23/12/2019
Date analysed	-	24/12/2019	24/12/2019	24/12/2019	24/12/2019	24/12/2019
TRH C10 - C14	mg/kg	<50	51	<50	61	<50
TRH C15 - C28	mg/kg	<100	170	<100	140	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	360	<100	160	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	54	<50	64	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	54	<50	64	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	360	<100	200	<100
TRH >C34 -C40	mg/kg	<100	400	<100	180	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	810	<50	450	<50
Surrogate o-Terphenyl	%	82	84	84	91	77

svTRH (C10-C40) in Soil		
Our Reference		233656-17
Your Reference	UNITS	BD3/20191217
Depth		-
Date Sampled		17/12/2019
Type of sample		SOIL
Date extracted	-	23/12/2019
Date analysed	-	24/12/2019
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100
Total +ve TRH (>C10-C40)	mg/kg	<50
Surrogate o-Terphenyl	%	79

PAHs in Soil						
Our Reference		233656-1	233656-2	233656-3	233656-4	233656-5
Your Reference	UNITS	MW1	MW1	MW2	MW2	MW2
Depth		0-0.2	0.3-0.5	0-0.2	0.3-0.5	0.8-1.0
Date Sampled		17/12/2019	17/12/2019	17/12/2019	17/12/2019	17/12/2019
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date extracted	-	23/12/2019	23/12/2019	23/12/2019	23/12/2019	23/12/2019
Date analysed	-	23/12/2019	23/12/2019	23/12/2019	23/12/2019	23/12/2019
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	90	97	93	92	95

PAHs in Soil						
Our Reference		233656-7	233656-8	233656-9	233656-10	233656-11
Your Reference	UNITS	MW3	MW3	BH1	BH1	BH1
Depth		0-0.2	0.8-1.0	0.05-0.15	0.3-0.5	0.8-1.0
Date Sampled		17/12/2019	17/12/2019	17/12/2019	17/12/2019	17/12/2019
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date extracted	-	23/12/2019	23/12/2019	23/12/2019	23/12/2019	23/12/2019
Date analysed	-	23/12/2019	23/12/2019	23/12/2019	23/12/2019	23/12/2019
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	0.2	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	0.2	<0.05	0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	92	92	88	90	87

PAHs in Soil						
Our Reference		233656-12	233656-13	233656-14	233656-15	233656-16
Your Reference	UNITS	BH2	BH2	BH2	BH3	BH3
Depth		0.05-0.15	0.3-0.5	0.8-1.0	03-0.5	0.8-1.0
Date Sampled		17/12/2019	17/12/2019	17/12/2019	17/12/2019	17/12/2019
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date extracted	-	23/12/2019	23/12/2019	23/12/2019	23/12/2019	23/12/2019
Date analysed	-	23/12/2019	23/12/2019	23/12/2019	23/12/2019	23/12/2019
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	90	88	90	93	89

PAHs in Soil		
Our Reference		233656-17
Your Reference	UNITS	BD3/20191217
Depth		-
Date Sampled		17/12/2019
Type of sample		SOIL
Date extracted	-	23/12/2019
Date analysed	-	23/12/2019
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	<0.1
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	<0.1
Pyrene	mg/kg	<0.1
Benzo(a)anthracene	mg/kg	<0.1
Chrysene	mg/kg	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2
Benzo(a)pyrene	mg/kg	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1
Total +ve PAH's	mg/kg	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5
Surrogate p-Terphenyl-d14	%	92

Organochlorine Pesticides in soil				_		
Our Reference		233656-1	233656-3	233656-7	233656-8	233656-9
Your Reference	UNITS	MW1	MW2	MW3	MW3	BH1
Depth		0-0.2	0-0.2	0-0.2	0.8-1.0	0.05-0.15
Date Sampled		17/12/2019	17/12/2019	17/12/2019	17/12/2019	17/12/2019
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date extracted	-	23/12/2019	23/12/2019	23/12/2019	23/12/2019	23/12/2019
Date analysed	-	23/12/2019	23/12/2019	23/12/2019	23/12/2019	23/12/2019
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	93	96	95	91	98

Organochlorine Pesticides in soil					
Our Reference		233656-10	233656-12	233656-13	233656-15
Your Reference	UNITS	BH1	BH2	BH2	BH3
Depth		0.3-0.5	0.05-0.15	0.3-0.5	03-0.5
Date Sampled		17/12/2019	17/12/2019	17/12/2019	17/12/2019
Type of sample		SOIL	SOIL	SOIL	SOIL
Date extracted	-	23/12/2019	23/12/2019	23/12/2019	23/12/2019
Date analysed	-	23/12/2019	23/12/2019	23/12/2019	23/12/2019
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
нсв	mg/kg	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	95	106	94	99

Organophosphorus Pesticides in Soil						
Our Reference		233656-1	233656-3	233656-7	233656-8	233656-9
Your Reference	UNITS	MW1	MW2	MW3	MW3	BH1
Depth		0-0.2	0-0.2	0-0.2	0.8-1.0	0.05-0.15
Date Sampled		17/12/2019	17/12/2019	17/12/2019	17/12/2019	17/12/2019
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date extracted	-	23/12/2019	23/12/2019	23/12/2019	23/12/2019	23/12/2019
Date analysed	-	23/12/2019	23/12/2019	23/12/2019	23/12/2019	23/12/2019
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	93	96	95	91	98
Organophosphorus Pesticides in Soil				_		
-------------------------------------	-------	------------	------------	------------	------------	
Our Reference		233656-10	233656-12	233656-13	233656-15	
Your Reference	UNITS	BH1	BH2	BH2	BH3	
Depth		0.3-0.5	0.05-0.15	0.3-0.5	03-0.5	
Date Sampled		17/12/2019	17/12/2019	17/12/2019	17/12/2019	
Type of sample		SOIL	SOIL	SOIL	SOIL	
Date extracted	-	23/12/2019	23/12/2019	23/12/2019	23/12/2019	
Date analysed	-	23/12/2019	23/12/2019	23/12/2019	23/12/2019	
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	
Surrogate TCMX	%	95	106	94	99	

PCBs in Soil						
Our Reference		233656-1	233656-3	233656-7	233656-8	233656-9
Your Reference	UNITS	MW1	MW2	MW3	MW3	BH1
Depth		0-0.2	0-0.2	0-0.2	0.8-1.0	0.05-0.15
Date Sampled		17/12/2019	17/12/2019	17/12/2019	17/12/2019	17/12/2019
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date extracted	-	23/12/2019	23/12/2019	23/12/2019	23/12/2019	23/12/2019
Date analysed	-	23/12/2019	23/12/2019	23/12/2019	23/12/2019	23/12/2019
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	93	96	95	91	98

PCBs in Soil					
Our Reference		233656-10	233656-12	233656-13	233656-15
Your Reference	UNITS	BH1	BH2	BH2	BH3
Depth		0.3-0.5	0.05-0.15	0.3-0.5	03-0.5
Date Sampled		17/12/2019	17/12/2019	17/12/2019	17/12/2019
Type of sample		SOIL	SOIL	SOIL	SOIL
Date extracted	-	23/12/2019	23/12/2019	23/12/2019	23/12/2019
Date analysed	-	23/12/2019	23/12/2019	23/12/2019	23/12/2019
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	95	106	94	99

Acid Extractable metals in soil						
Our Reference		233656-1	233656-2	233656-3	233656-4	233656-5
Your Reference	UNITS	MW1	MW1	MW2	MW2	MW2
Depth		0-0.2	0.3-0.5	0-0.2	0.3-0.5	0.8-1.0
Date Sampled		17/12/2019	17/12/2019	17/12/2019	17/12/2019	17/12/2019
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date prepared	-	23/12/2019	23/12/2019	23/12/2019	23/12/2019	23/12/2019
Date analysed	-	23/12/2019	23/12/2019	23/12/2019	23/12/2019	23/12/2019
Arsenic	mg/kg	5	6	4	7	5
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	11	16	14	16	14
Copper	mg/kg	27	19	25	9	14
Lead	mg/kg	11	14	15	12	13
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	5	5	15	3	4
Zinc	mg/kg	34	27	55	11	21

Acid Extractable metals in soil						
Our Reference		233656-7	233656-8	233656-9	233656-10	233656-11
Your Reference	UNITS	MW3	MW3	BH1	BH1	BH1
Depth		0-0.2	0.8-1.0	0.05-0.15	0.3-0.5	0.8-1.0
Date Sampled		17/12/2019	17/12/2019	17/12/2019	17/12/2019	17/12/2019
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date prepared	-	23/12/2019	23/12/2019	23/12/2019	23/12/2019	23/12/2019
Date analysed	-	23/12/2019	23/12/2019	23/12/2019	23/12/2019	23/12/2019
Arsenic	mg/kg	8	4	<4	5	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	9	11	55	29	29
Copper	mg/kg	30	25	47	17	76
Lead	mg/kg	14	14	5	11	6
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	13	8	59	18	33
Zinc	mg/kg	62	50	43	22	33

Acid Extractable metals in soil						
Our Reference		233656-12	233656-13	233656-14	233656-15	233656-16
Your Reference	UNITS	BH2	BH2	BH2	BH3	BH3
Depth		0.05-0.15	0.3-0.5	0.8-1.0	03-0.5	0.8-1.0
Date Sampled		17/12/2019	17/12/2019	17/12/2019	17/12/2019	17/12/2019
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date prepared	-	23/12/2019	23/12/2019	23/12/2019	23/12/2019	23/12/2019
Date analysed	-	23/12/2019	23/12/2019	23/12/2019	23/12/2019	23/12/2019
Arsenic	mg/kg	5	5	8	8	5
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	15	32	11	31	14
Copper	mg/kg	15	28	22	19	16
Lead	mg/kg	11	10	13	23	10
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	5	25	4	13	5
Zinc	mg/kg	18	26	23	26	14

Acid Extractable metals in soil			
Our Reference		233656-17	233656-20
Your Reference	UNITS	BD3/20191217	MW1 - [TRIPLICATE]
Depth		-	0-0.2
Date Sampled		17/12/2019	17/12/2019
Type of sample		SOIL	SOIL
Date prepared	-	23/12/2019	23/12/2019
Date analysed	-	23/12/2019	23/12/2019
Arsenic	mg/kg	6	5
Cadmium	mg/kg	<0.4	<0.4
Chromium	mg/kg	14	13
Copper	mg/kg	23	21
Lead	mg/kg	14	13
Mercury	mg/kg	<0.1	<0.1
Nickel	mg/kg	8	5
Zinc	mg/kg	45	29

Misc Soil - Inorg						
Our Reference		233656-1	233656-3	233656-7	233656-8	233656-9
Your Reference	UNITS	MW1	MW2	MW3	MW3	BH1
Depth		0-0.2	0-0.2	0-0.2	0.8-1.0	0.05-0.15
Date Sampled		17/12/2019	17/12/2019	17/12/2019	17/12/2019	17/12/2019
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date prepared	-	23/12/2019	23/12/2019	23/12/2019	23/12/2019	23/12/2019
Date analysed	-	23/12/2019	23/12/2019	23/12/2019	23/12/2019	23/12/2019
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5
Misc Soil - Inorg						
Our Reference		233656-10	233656-12	233656-13	233656-15	
Your Reference	UNITS	BH1	BH2	BH2	BH3	
Depth		0.3-0.5	0.05-0.15	0.3-0.5	03-0.5	
Date Sampled		17/12/2019	17/12/2019	17/12/2019	17/12/2019	
Type of sample		SOIL	SOIL	SOIL	SOIL	
Date prepared	-	23/12/2019	23/12/2019	23/12/2019	23/12/2019	
Date analysed	-	23/12/2019	23/12/2019	23/12/2019	23/12/2019	
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	

						_
Moisture						
Our Reference		233656-1	233656-2	233656-3	233656-4	233656-5
Your Reference	UNITS	MW1	MW1	MW2	MW2	MW2
Depth		0-0.2	0.3-0.5	0-0.2	0.3-0.5	0.8-1.0
Date Sampled		17/12/2019	17/12/2019	17/12/2019	17/12/2019	17/12/2019
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date prepared	-	23/12/2019	23/12/2019	23/12/2019	23/12/2019	23/12/2019
Date analysed	-	24/12/2019	24/12/2019	24/12/2019	24/12/2019	24/12/2019
Moisture	%	9.2	14	2.9	13	13
Moisture						
Our Reference		233656-7	233656-8	233656-9	233656-10	233656-17
Your Reference	UNITS	MW3	MW3	BH1	BH1	BH1
Depth		0-0.2	0.8-1.0	0.05-0.15	0.3-0.5	0.8-1.0
Date Sampled		17/12/2019	17/12/2019	17/12/2019	17/12/2019	17/12/201
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date prepared	-	23/12/2019	23/12/2019	23/12/2019	23/12/2019	23/12/201
Date analysed	-	24/12/2019	24/12/2019	24/12/2019	24/12/2019	24/12/201
Moisture	%	6.0	10	3.7	5.3	4.0
Moisture						
Our Reference		233656-12	233656-13	233656-14	233656-15	233656-16
Your Reference	UNITS	BH2	BH2	BH2	BH3	BH3
Depth		0.05-0.15	0.3-0.5	0.8-1.0	03-0.5	0.8-1.0
Date Sampled		17/12/2019	17/12/2019	17/12/2019	17/12/2019	17/12/201
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date prepared	-	23/12/2019	23/12/2019	23/12/2019	23/12/2019	23/12/201
Date analysed	-	24/12/2019	24/12/2019	24/12/2019	24/12/2019	24/12/201
Moisture	%	12	11	13	12	14
Moisture						
Our Reference		233656-17				
Your Reference	UNITS	BD3/20191217				
Depth		-				

Depth		-
Date Sampled		17/12/2019
Type of sample		SOIL
Date prepared	-	23/12/2019
Date analysed	-	24/12/2019
Moisture	%	9.3

Asbestos ID - soils NEPM						
Our Reference		233656-1	233656-3	233656-7	233656-10	233656-13
Your Reference	UNITS	MW1	MW2	MW3	BH1	BH2
Depth		0-0.2	0-0.2	0-0.2	0.3-0.5	0.3-0.5
Date Sampled		17/12/2019	17/12/2019	17/12/2019	17/12/2019	17/12/2019
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date analysed	-	24/12/2019	24/12/2019	24/12/2019	24/12/2019	24/12/2019
Sample mass tested	g	1,143.19	1,333.28	1,143.6	1,325.41	1,400.76
Sample Description	-	Red clayey soil & rocks	Brown coarse- grained soil & rocks			
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg				
		Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected
Trace Analysis	-	No asbestos detected				
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected				
ACM >7mm Estimation*	g	-	-	-	-	-
FA and AF Estimation*	g	-	-	-	-	-
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001

Asbestos ID - soils NEPM		
Our Reference		233656-15
Your Reference	UNITS	BH3
Depth		03-0.5
Date Sampled		17/12/2019
Type of sample		SOIL
Date analysed	-	24/12/2019
Sample mass tested	g	1,540.3
Sample Description	-	Brown coarse- grained soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres
		detected
Trace Analysis	-	No asbestos detected
Total Asbestos ^{#1}	g/kg	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected
ACM >7mm Estimation*	g	-
FA and AF Estimation*	g	-
FA and AF Estimation*#2	%(w/w)	<0.001

Asbestos ID - materials		
Our Reference		233656-6
Your Reference	UNITS	A1
Depth		-
Date Sampled		17/12/2019
Type of sample		MATERIAL
Date analysed	-	23/12/2019
Mass / Dimension of Sample	-	32x26x5mm
Sample Description	-	Grey fibre cement material
Asbestos ID in materials	-	Chrysotile asbestos detected
Trace Analysis	-	Not Tested

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
ASB-001	Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos- Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard AS4964-2004. Results reported denoted with * are outside our scope of NATA accreditation.
	NOTE ^{#1} Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF)
	NOTE ^{#2} The screening level of 0.001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.
	Estimation = Estimated asbestos weight
	Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.
AT-008	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.

Method ID	Methodology Summary
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-012/017	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS.
Org-012/017	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS and/or GC-MS/MS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-012/017	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil		Duplicate St					Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	233656-3	
Date extracted	-			23/12/2019	1	23/12/2019	23/12/2019		23/12/2019	23/12/2019	
Date analysed	-			25/12/2019	1	25/12/2019	25/12/2019		25/12/2019	25/12/2019	
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	1	<25	<25	0	109	109	
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	1	<25	<25	0	109	109	
Benzene	mg/kg	0.2	Org-016	<0.2	1	<0.2	<0.2	0	119	119	
Toluene	mg/kg	0.5	Org-016	<0.5	1	<0.5	<0.5	0	115	114	
Ethylbenzene	mg/kg	1	Org-016	<1	1	<1	<1	0	103	103	
m+p-xylene	mg/kg	2	Org-016	<2	1	<2	<2	0	104	104	
o-Xylene	mg/kg	1	Org-016	<1	1	<1	<1	0	106	106	
naphthalene	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-016	112	1	110	108	2	109	109	

QUALITY CONT	ROL: vTRH	(C6-C10)/	BTEXN in Soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date extracted	-			[NT]	15	23/12/2019	23/12/2019			[NT]	
Date analysed	-			[NT]	15	25/12/2019	25/12/2019			[NT]	
TRH C ₆ - C ₉	mg/kg	25	Org-016	[NT]	15	<25	<25	0		[NT]	
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	[NT]	15	<25	<25	0		[NT]	
Benzene	mg/kg	0.2	Org-016	[NT]	15	<0.2	<0.2	0		[NT]	
Toluene	mg/kg	0.5	Org-016	[NT]	15	<0.5	<0.5	0		[NT]	
Ethylbenzene	mg/kg	1	Org-016	[NT]	15	<1	<1	0		[NT]	
m+p-xylene	mg/kg	2	Org-016	[NT]	15	<2	<2	0		[NT]	
o-Xylene	mg/kg	1	Org-016	[NT]	15	<1	<1	0		[NT]	
naphthalene	mg/kg	1	Org-014	[NT]	15	<1	<1	0		[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-016	[NT]	15	107	106	1		[NT]	

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil		Duplicate S					Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	233656-3	
Date extracted	-			23/12/2019	1	23/12/2019	23/12/2019		23/12/2019	23/12/2019	
Date analysed	-			23/12/2019	1	23/12/2019	23/12/2019		23/12/2019	23/12/2019	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	1	<50	<50	0	120	95	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	1	<100	<100	0	114	79	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	1	<100	<100	0	138	94	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	1	<50	<50	0	120	95	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	1	<100	<100	0	114	79	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	1	<100	<100	0	138	94	
Surrogate o-Terphenyl	%		Org-003	81	1	80	92	14	93	91	

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	15	23/12/2019	23/12/2019			
Date analysed	-			[NT]	15	24/12/2019	24/12/2019			
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	[NT]	15	61	<50	20		
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	[NT]	15	140	120	15		
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	[NT]	15	160	130	21		
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	[NT]	15	64	52	21		
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	[NT]	15	200	170	16		
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	[NT]	15	180	150	18		
Surrogate o-Terphenyl	%		Org-003	[NT]	15	91	85	7		

QUALI	TY CONTRC	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	233656-3
Date extracted	-			23/12/2019	1	23/12/2019	23/12/2019		23/12/2019	23/12/2019
Date analysed	-			23/12/2019	1	23/12/2019	23/12/2019		23/12/2019	23/12/2019
Naphthalene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	94	98
Acenaphthylene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluorene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	102	104
Phenanthrene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	98	103
Anthracene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	88	95
Pyrene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	88	95
Benzo(a)anthracene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	92	97
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012/017	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-012/017	<0.05	1	<0.05	<0.05	0	100	105
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-012/017	94	1	90	102	12	90	102

QUALIT	Y CONTRO	L: PAHs	in Soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date extracted	-			[NT]	15	23/12/2019	23/12/2019			[NT]	
Date analysed	-			[NT]	15	23/12/2019	23/12/2019			[NT]	
Naphthalene	mg/kg	0.1	Org-012/017	[NT]	15	<0.1	<0.1	0		[NT]	
Acenaphthylene	mg/kg	0.1	Org-012/017	[NT]	15	<0.1	<0.1	0		[NT]	
Acenaphthene	mg/kg	0.1	Org-012/017	[NT]	15	<0.1	<0.1	0		[NT]	
Fluorene	mg/kg	0.1	Org-012/017	[NT]	15	<0.1	<0.1	0		[NT]	
Phenanthrene	mg/kg	0.1	Org-012/017	[NT]	15	<0.1	<0.1	0		[NT]	
Anthracene	mg/kg	0.1	Org-012/017	[NT]	15	<0.1	<0.1	0		[NT]	
Fluoranthene	mg/kg	0.1	Org-012/017	[NT]	15	<0.1	<0.1	0		[NT]	
Pyrene	mg/kg	0.1	Org-012/017	[NT]	15	<0.1	<0.1	0		[NT]	
Benzo(a)anthracene	mg/kg	0.1	Org-012/017	[NT]	15	<0.1	<0.1	0		[NT]	
Chrysene	mg/kg	0.1	Org-012/017	[NT]	15	<0.1	<0.1	0		[NT]	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012/017	[NT]	15	<0.2	<0.2	0		[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-012/017	[NT]	15	<0.05	<0.05	0		[NT]	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012/017	[NT]	15	<0.1	<0.1	0		[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012/017	[NT]	15	<0.1	<0.1	0		[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012/017	[NT]	15	<0.1	<0.1	0		[NT]	
Surrogate p-Terphenyl-d14	%		Org-012/017	[NT]	15	93	92	1		[NT]	

QUALITY CON	TROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	233656-3
Date extracted	-			23/12/2019	1	23/12/2019	23/12/2019		23/12/2019	23/12/2019
Date analysed	-			23/12/2019	1	23/12/2019	23/12/2019		23/12/2019	23/12/2019
alpha-BHC	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	100	102
НСВ	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	104	104
gamma-BHC	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	90	98
delta-BHC	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	100	106
Heptachlor Epoxide	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	94	102
gamma-Chlordane	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	98	104
Dieldrin	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	88	92
Endrin	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	88	96
Endosulfan II	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	80	86
Endrin Aldehyde	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	70	84
Methoxychlor	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-012/017	96	1	93	103	10	97	101

QUALITY CO	ONTROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date extracted	-			[NT]	15	23/12/2019	23/12/2019			[NT]	
Date analysed	-			[NT]	15	23/12/2019	23/12/2019			[NT]	
alpha-BHC	mg/kg	0.1	Org-012/017	[NT]	15	<0.1	<0.1	0		[NT]	
НСВ	mg/kg	0.1	Org-012/017	[NT]	15	<0.1	<0.1	0		[NT]	
beta-BHC	mg/kg	0.1	Org-012/017	[NT]	15	<0.1	<0.1	0		[NT]	
gamma-BHC	mg/kg	0.1	Org-012/017	[NT]	15	<0.1	<0.1	0		[NT]	
Heptachlor	mg/kg	0.1	Org-012/017	[NT]	15	<0.1	<0.1	0		[NT]	
delta-BHC	mg/kg	0.1	Org-012/017	[NT]	15	<0.1	<0.1	0		[NT]	
Aldrin	mg/kg	0.1	Org-012/017	[NT]	15	<0.1	<0.1	0		[NT]	
Heptachlor Epoxide	mg/kg	0.1	Org-012/017	[NT]	15	<0.1	<0.1	0		[NT]	
gamma-Chlordane	mg/kg	0.1	Org-012/017	[NT]	15	<0.1	<0.1	0		[NT]	
alpha-chlordane	mg/kg	0.1	Org-012/017	[NT]	15	<0.1	<0.1	0		[NT]	
Endosulfan I	mg/kg	0.1	Org-012/017	[NT]	15	<0.1	<0.1	0		[NT]	
pp-DDE	mg/kg	0.1	Org-012/017	[NT]	15	<0.1	<0.1	0		[NT]	
Dieldrin	mg/kg	0.1	Org-012/017	[NT]	15	<0.1	<0.1	0		[NT]	
Endrin	mg/kg	0.1	Org-012/017	[NT]	15	<0.1	<0.1	0		[NT]	
Endosulfan II	mg/kg	0.1	Org-012/017	[NT]	15	<0.1	<0.1	0		[NT]	
pp-DDD	mg/kg	0.1	Org-012/017	[NT]	15	<0.1	<0.1	0		[NT]	
Endrin Aldehyde	mg/kg	0.1	Org-012/017	[NT]	15	<0.1	<0.1	0		[NT]	
pp-DDT	mg/kg	0.1	Org-012/017	[NT]	15	<0.1	<0.1	0		[NT]	
Endosulfan Sulphate	mg/kg	0.1	Org-012/017	[NT]	15	<0.1	<0.1	0		[NT]	
Methoxychlor	mg/kg	0.1	Org-012/017	[NT]	15	<0.1	<0.1	0		[NT]	
Surrogate TCMX	%		Org-012/017	[NT]	15	99	93	6		[NT]	

QUALITY CONTRO	L: Organoph	nosphorus	s Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	233656-3
Date extracted	-			23/12/2019	1	23/12/2019	23/12/2019		23/12/2019	23/12/2019
Date analysed	-			23/12/2019	1	23/12/2019	23/12/2019		23/12/2019	23/12/2019
Dichlorvos	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	78	88
Dimethoate	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	86	90
Fenitrothion	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	86	86
Malathion	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	61	70
Chlorpyriphos	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	86	88
Parathion	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	100	112
Bromophos-ethyl	mg/kg	0.1	AT-008	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	72	82
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-012/017	96	1	93	103	10	97	101

QUALITY CONTRO	L: Organopł	nosphorus	s Pesticides in Soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date extracted	-				15	23/12/2019	23/12/2019			[NT]	
Date analysed	-				15	23/12/2019	23/12/2019			[NT]	
Dichlorvos	mg/kg	0.1	Org-012/017		15	<0.1	<0.1	0		[NT]	
Dimethoate	mg/kg	0.1	Org-012/017		15	<0.1	<0.1	0		[NT]	
Diazinon	mg/kg	0.1	Org-012/017		15	<0.1	<0.1	0		[NT]	
Chlorpyriphos-methyl	mg/kg	0.1	Org-012/017		15	<0.1	<0.1	0		[NT]	
Ronnel	mg/kg	0.1	Org-012/017		15	<0.1	<0.1	0		[NT]	
Fenitrothion	mg/kg	0.1	Org-012/017		15	<0.1	<0.1	0		[NT]	
Malathion	mg/kg	0.1	Org-012/017		15	<0.1	<0.1	0		[NT]	
Chlorpyriphos	mg/kg	0.1	Org-012/017		15	<0.1	<0.1	0		[NT]	
Parathion	mg/kg	0.1	Org-012/017		15	<0.1	<0.1	0		[NT]	
Bromophos-ethyl	mg/kg	0.1	AT-008		15	<0.1	<0.1	0		[NT]	
Ethion	mg/kg	0.1	Org-012/017		15	<0.1	<0.1	0		[NT]	
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-012/017		15	<0.1	<0.1	0		[NT]	
Surrogate TCMX	%		Org-012/017		15	99	93	6		[NT]	

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	233656-3
Date extracted	-			23/12/2019	1	23/12/2019	23/12/2019		23/12/2019	23/12/2019
Date analysed	-			23/12/2019	1	23/12/2019	23/12/2019		23/12/2019	23/12/2019
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	70	74
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-006	96	1	93	103	10	97	101

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date extracted	-			[NT]	15	23/12/2019	23/12/2019				
Date analysed	-			[NT]	15	23/12/2019	23/12/2019				
Aroclor 1016	mg/kg	0.1	Org-006	[NT]	15	<0.1	<0.1	0			
Aroclor 1221	mg/kg	0.1	Org-006	[NT]	15	<0.1	<0.1	0			
Aroclor 1232	mg/kg	0.1	Org-006	[NT]	15	<0.1	<0.1	0			
Aroclor 1242	mg/kg	0.1	Org-006	[NT]	15	<0.1	<0.1	0			
Aroclor 1248	mg/kg	0.1	Org-006	[NT]	15	<0.1	<0.1	0			
Aroclor 1254	mg/kg	0.1	Org-006	[NT]	15	<0.1	<0.1	0			
Aroclor 1260	mg/kg	0.1	Org-006	[NT]	15	<0.1	<0.1	0			
Surrogate TCMX	%		Org-006	[NT]	15	99	93	6	[NT]	[NT]	

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	233656-3
Date prepared	-			23/12/2019	1	23/12/2019	23/12/2019		23/12/2019	23/12/2019
Date analysed	-			23/12/2019	1	23/12/2019	23/12/2019		23/12/2019	23/12/2019
Arsenic	mg/kg	4	Metals-020	<4	1	5	5	0	98	95
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	91	81
Chromium	mg/kg	1	Metals-020	<1	1	11	12	9	101	92
Copper	mg/kg	1	Metals-020	<1	1	27	14	63	100	116
Lead	mg/kg	1	Metals-020	<1	1	11	11	0	105	101
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	102	105
Nickel	mg/kg	1	Metals-020	<1	1	5	3	50	94	90
Zinc	mg/kg	1	Metals-020	<1	1	34	23	39	104	96

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	15	23/12/2019	23/12/2019			[NT]
Date analysed	-			[NT]	15	23/12/2019	23/12/2019			[NT]
Arsenic	mg/kg	4	Metals-020	[NT]	15	8	7	13		[NT]
Cadmium	mg/kg	0.4	Metals-020	[NT]	15	<0.4	<0.4	0		[NT]
Chromium	mg/kg	1	Metals-020	[NT]	15	31	25	21		[NT]
Copper	mg/kg	1	Metals-020	[NT]	15	19	19	0		[NT]
Lead	mg/kg	1	Metals-020	[NT]	15	23	19	19		[NT]
Mercury	mg/kg	0.1	Metals-021	[NT]	15	<0.1	<0.1	0		[NT]
Nickel	mg/kg	1	Metals-020	[NT]	15	13	11	17		[NT]
Zinc	mg/kg	1	Metals-020	[NT]	15	26	25	4	[NT]	[NT]

QUALITY	CONTROL	Misc Soi	I - Inorg		Du	Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	233656-3
Date prepared	-			23/12/2019	1	23/12/2019	23/12/2019		23/12/2019	23/12/2019
Date analysed	-			23/12/2019	1	23/12/2019	23/12/2019		23/12/2019	23/12/2019
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	<5	1	<5	<5	0	101	112

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions							
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.							
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.							
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.							
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.							
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.							
Australian Drinking	Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E. Coli levels are less than							

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.

Acid Extractable Metals in Soil: The laboratory RPD acceptance criteria has been exceeded for 233656-1 for Cu. Therefore a triplicate result has been issued as laboratory sample number 233656-20.

Douglas Partners Geotechnics | Environment | Groundwater

CHAIN OF CUSTODY DESPATCH SHEET

Project No:	86819	.01			Suburb):	Kamira	Court		To:	Env	/iroLab		
Project Name:	Kamir	a Court DS	i		Order I	Number							reet, Chats	swood 2067
Project Manage					Sample		JJH	-		Attn:	Aile	en Hie	·	
Emails:	jack.s	<u>nowden; j</u>	<u>oel.james</u>	-hall@doug	laspartr	ers.com	.au	· ·	1	Phone:) 9910 62		·
Date Required:		day 🛛	24 hours		ours 🛛	72 hou		Standard		Email:			rolab.com	
Prior Storage:	🗹 Esky	/ 🗹 Fridg			Do sam	oles contai	n 'potential	'HBM?	Yes 🗹	No 🗆	(If YES, th	en handle,	transport and	store in accordance with FPM HAZID)
		pled	Sample Type	Container Type	· • •		. ·		Analytes	. <u></u>			<u></u>	
Sample ID	Lab ID	Date Sampled	S - soil W - water	G - glass P - plastic	Combo 8	Combo 3	FA/AF	Asbestos ID	втех					Notes/preservation
🌤 MW1/0-0.2	١	17.12.19	S	G	x	e	X	5						
MW1/0.3-0.5	2	17.12.19	s	G		x								Envirolab Services
MW2/0-0.2	3	17.12.19	s	G	· · · X	· •• •	x			đ.			CIVIROLAB	12 Ashley St Chatswood NSW 2067
<u>MW2/0.3-0.5</u>	4	17.12.19	S	G		<u>x</u>	· · · ·		- <u></u> -	<u>, </u>			Job No: 2	Ph: (02) 9910 6200 33656
MW2/0.8-1.0	5	17.12.19	S	G		x	/	, 						ed 20/12/19
1w2- A1	6	17.12.19	s	G		· .	1	` x					Time Recei	ved: 122 G
MW3/0-0.2	7	18.12.19	S	G	x		x						Received b	Ambient
MW3/0.8-1.0	8	18.12.19	S	G	x		÷	- · · · · · · · · · · · · · · · · · · ·	-	-			Cooling: Ice Security: Int	/Icepack act/Broken/ Kone
BH1/0.05-0.15	٩	17.12.19	່ S	G	X			`	· .	L				
[©] BH1/0.3-0.5	10	17.12.19	s	G	x		X 3							
BH1/0.8-1.0	11	17.12.19	S	G		X		÷ •				· ·		
BH2/0.05-0.15	12	17.12.19	, S	G	x									
BH2/0.3-0.5	Ϊ <u></u> Ξ	17.12.19	S	, G	x		x							
BH2/0.8-1.0	14	⁴ 17.12.19	S	G		x	, ,	 .		<u> </u>		<u> </u>		
BH3/0.3-0.5	15	17.12.19	, S	G	x		x	·				A 1.77		
PQL (S) mg/kg			·	Ļ			· · · · ·	· <u> </u>	<u> </u>	<u> </u>				req'd for all water analytes
PQL = practical Metals to Analy					t to Labor	atory Met	hod Deteo	tion Limi	t	Lab R	eport/Re	ference	No: 23	3656
Total number of				Reli	nquished	by: O	MI	Transpo	orted to la	aboratory				
Send Results to	; D	ouglas Parl		td Add	ress			·				Phone		Fax:
Signed:	\sim	-6-		Received b	Y: EL	3 Sid	SR	olton	R	ent	Date &	Time: 🤉	0/12/	19 12:20

÷,

Douglas Partners

CHAIN OF CUSTODY DESPATCH SHEET

Ψ.					
-	12	Geotechnics	1 Enviro	nment l	Groundwater

Project No:	86819	9.01			Suburb):	Kamira	Court		To:	EnviroLab			
Project Name:		a Court DS			Order N	lumber							eet, Chat	swood 2067
Project Manage	r: Jack S	Snowden			Sample	er:	JJH			Attn:	Aile	en Hie		
Emails:	jack.s	snowden; j	<u>oel.james</u>	-hall@doug	glaspartr	ers.com	.au			Phone:		9910 620		
Date Required:		day 🖓	24 hours		ours 🗆 🗌	72 hou	rs 🗆 🔄	Standard		Email:	<u>Ahi</u>	e@envire	<u>olab.com</u>	<u>au</u>
Prior Storage:	🗹 Esk	y 🗹 Fridg	ge 🗆 Sh		Do samp	oles contai	n 'potentia	I' HBM?	Yes 🗹	No 🗆	(If YES, the	en han <u>dle, tr</u>	ansport and	store in accordance with FPM HAZID)
· ·	· ·	pled	Sample Type	Container Type	, :				Analytes	i	· · · · ·			
Sample ID	Lab ID	Date Sampled	- soil water	i - glass - plastic	bo 8	bo 3	FA/AF	Asbestos ID	BTEX					Notes/preservation
		Date	S - soil W - water	G - g P - pl	Combo	Combo	FΑ	Asbe II	BT		- 		:	
BH3/0.8-1.0	16	17.12.19	S	G		x	•			-				
BD B 20191217	17	17.12.19	S	G	л	x		· · ·						
TS	18	13-12-14	S	G	:		: .	. :	x					
TB	19	13.12.17	S	G		<u></u>			x	<u></u>				
<u>.</u>														
											<u> </u>			
				1				· .						¥.
									,					
-			~				,		,					· ·
							·							· · · · · · · · · · · · · · · · · · ·
													1	
PQL (S) mg/kg													C PQLs	req'd for all water analytes 🛛
	PQL = practical quantitation limit. If none given, default to Laboratory Method Detection Limit Metals to Analyse: 8HM unless specified here:													
Total number o					nquished	by:	,	Transpo	rted to la	l aboratory	v by:			· · · · · · · · · · · · · · · · · · ·
Send Results to		ouglas Part								<u> </u>	-	Phone		Fax:
Signed:	,		<u> </u>	Received b	Y: EL	s Sya	2· S	Bolton		u)	Date & 1	Time: 20	0/12/1	9 12:20.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Jack Snowden

Sample Login Details	
Your reference	86819.01, Kamira Court
Envirolab Reference	233656
Date Sample Received	20/12/2019
Date Instructions Received	20/12/2019
Date Results Expected to be Reported	06/01/2020

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	18 SOIL, 1 MATERIAL
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	15.4
Cooling Method	Ice
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst					
Phone: 02 9910 6200	Phone: 02 9910 6200					
Fax: 02 9910 6201	Fax: 02 9910 6201					
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au					

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Acid Extractable metalsin soil	Misc Soil - Inorg	Asbestos ID - soils NEPM	Asbestos ID - materials
MW1-0-0.2	✓	✓	✓	✓	✓	✓	✓	✓	✓	
MW1-0.3-0.5	✓	✓	✓				✓			
MW2-0-0.2	✓	✓	✓	✓	✓	✓	✓	✓	✓	
MW2-0.3-0.5	✓	✓	✓				✓			
MW2-0.8-1.0	✓	✓	✓				✓			
A1										\checkmark
MW3-0-0.2	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark	
MW3-0.8-1.0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
BH1-0.05-0.15	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark	\checkmark		
BH1-0.3-0.5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
BH1-0.8-1.0	\checkmark	\checkmark	\checkmark				\checkmark			
BH2-0.05-0.15	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
BH2-0.3-0.5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
BH2-0.8-1.0	1	✓	✓				✓			
BH3-03-0.5	✓	✓	✓	✓	✓	✓	✓	\checkmark	✓	
BH3-0.8-1.0	✓	✓	✓				✓			
BD3/20191217	✓	✓	✓				✓			
TS	✓									
ТВ	✓									

The '\screw' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 235240

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Joel James-Hall, Jack Snowden
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	86819.01, Kamira Court DSI
Number of Samples	5 Water
Date samples received	24/01/2020
Date completed instructions received	24/01/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details						
Date results requested by	03/02/2020					
Date of Issue	03/02/2020					
NATA Accreditation Number 29	NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with	ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *					

Results Approved By

Diego Bigolin, Team Leader, Inorganics Jaimie Loa-Kum-Cheung, Metals Supervisor Josh Williams, Senior Chemist Priya Samarawickrama, Senior Chemist

Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 235240 Revision No: R00

VOCs in water						
Our Reference		235240-1	235240-2	235240-3	235240-4	235240-5
Your Reference	UNITS	MW1	MW2	MW3	BD1/20200124	R01
Date Sampled		24/01/2020	24/01/2020	24/01/2020	24/01/2020	24/01/2020
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	28/01/2020	28/01/2020	28/01/2020	28/01/2020	28/01/2020
Date analysed	-	30/01/2020	30/01/2020	30/01/2020	30/01/2020	30/01/2020
Dichlorodifluoromethane	µg/L	<10	<10	<10	<10	<10
Chloromethane	µg/L	<10	<10	<10	<10	<10
Vinyl Chloride	µg/L	<10	<10	<10	<10	<10
Bromomethane	µg/L	<10	<10	<10	<10	<10
Chloroethane	µg/L	<10	<10	<10	<10	<10
Trichlorofluoromethane	µg/L	<10	<10	<10	<10	<10
1,1-Dichloroethene	µg/L	<1	<1	<1	<1	<1
Trans-1,2-dichloroethene	µg/L	<1	<1	<1	<1	<1
1,1-dichloroethane	µg/L	<1	<1	<1	<1	<1
Cis-1,2-dichloroethene	µg/L	<1	<1	<1	<1	<1
Bromochloromethane	µg/L	<1	<1	<1	<1	<1
Chloroform	µg/L	<1	<1	<1	<1	2
2,2-dichloropropane	µg/L	<1	<1	<1	<1	<1
1,2-dichloroethane	µg/L	<1	<1	<1	<1	<1
1,1,1-trichloroethane	µg/L	<1	<1	<1	<1	<1
1,1-dichloropropene	µg/L	<1	<1	<1	<1	<1
Cyclohexane	µg/L	<1	<1	<1	<1	<1
Carbon tetrachloride	µg/L	<1	<1	<1	<1	<1
Benzene	µg/L	<1	<1	<1	<1	<1
Dibromomethane	µg/L	<1	<1	<1	<1	<1
1,2-dichloropropane	µg/L	<1	<1	<1	<1	<1
Trichloroethene	µg/L	<1	<1	<1	<1	<1
Bromodichloromethane	µg/L	<1	<1	<1	<1	2
trans-1,3-dichloropropene	µg/L	<1	<1	<1	<1	<1
cis-1,3-dichloropropene	µg/L	<1	<1	<1	<1	<1
1,1,2-trichloroethane	µg/L	<1	<1	<1	<1	<1
Toluene	µg/L	<1	<1	<1	<1	<1
1,3-dichloropropane	µg/L	<1	<1	<1	<1	<1
Dibromochloromethane	µg/L	<1	<1	<1	<1	1
1,2-dibromoethane	µg/L	<1	<1	<1	<1	<1
Tetrachloroethene	µg/L	<1	<1	<1	<1	<1
1,1,1,2-tetrachloroethane	µg/L	<1	<1	<1	<1	<1
Chlorobenzene	µg/L	<1	<1	<1	<1	<1
Ethylbenzene	µg/L	<1	<1	<1	<1	<1

VOCs in water				_		
Our Reference		235240-1	235240-2	235240-3	235240-4	235240-5
Your Reference	UNITS	MW1	MW2	MW3	BD1/20200124	R01
Date Sampled		24/01/2020	24/01/2020	24/01/2020	24/01/2020	24/01/2020
Type of sample		Water	Water	Water	Water	Water
Bromoform	µg/L	<1	<1	<1	<1	<1
m+p-xylene	µg/L	<2	<2	<2	<2	<2
Styrene	μg/L	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	µg/L	<1	<1	<1	<1	<1
o-xylene	μg/L	<1	<1	<1	<1	<1
1,2,3-trichloropropane	µg/L	<1	<1	<1	<1	<1
Isopropylbenzene	μg/L	<1	<1	<1	<1	<1
Bromobenzene	µg/L	<1	<1	<1	<1	<1
n-propyl benzene	μg/L	<1	<1	<1	<1	<1
2-chlorotoluene	µg/L	<1	<1	<1	<1	<1
4-chlorotoluene	μg/L	<1	<1	<1	<1	<1
1,3,5-trimethyl benzene	µg/L	<1	<1	<1	<1	<1
Tert-butyl benzene	μg/L	<1	<1	<1	<1	<1
1,2,4-trimethyl benzene	µg/L	<1	<1	<1	<1	<1
1,3-dichlorobenzene	μg/L	<1	<1	<1	<1	<1
Sec-butyl benzene	µg/L	<1	<1	<1	<1	<1
1,4-dichlorobenzene	μg/L	<1	<1	<1	<1	<1
4-isopropyl toluene	µg/L	<1	<1	<1	<1	<1
1,2-dichlorobenzene	μg/L	<1	<1	<1	<1	<1
n-butyl benzene	µg/L	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	μg/L	<1	<1	<1	<1	<1
1,2,4-trichlorobenzene	µg/L	<1	<1	<1	<1	<1
Hexachlorobutadiene	µg/L	<1	<1	<1	<1	<1
1,2,3-trichlorobenzene	µg/L	<1	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	108	108	106	106	107
Surrogate toluene-d8	%	100	102	99	101	101
Surrogate 4-BFB	%	113	113	115	115	113

vTRH(C6-C10)/BTEXN in Water				
Our Reference		235240-1	235240-2	235240-3
Your Reference	UNITS	MW1	MW2	MW3
Date Sampled		24/01/2020	24/01/2020	24/01/2020
Type of sample		Water	Water	Water
Date extracted	-	28/01/2020	28/01/2020	28/01/2020
Date analysed	-	30/01/2020	30/01/2020	30/01/2020
TRH C ₆ - C ₉	µg/L	<10	<10	<10
TRH C ₆ - C ₁₀	μg/L	<10	<10	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10	<10	<10
Benzene	µg/L	<1	<1	<1
Toluene	µg/L	<1	<1	<1
Ethylbenzene	µg/L	<1	<1	<1
m+p-xylene	µg/L	<2	<2	<2
o-xylene	µg/L	<1	<1	<1
Naphthalene	µg/L	<1	<1	<1
Surrogate Dibromofluoromethane	%	108	108	106
Surrogate toluene-d8	%	100	102	99
Surrogate 4-BFB	%	113	113	115

svTRH (C10-C40) in Water				
Our Reference		235240-1	235240-2	235240-3
Your Reference	UNITS	MW1	MW2	MW3
Date Sampled		24/01/2020	24/01/2020	24/01/2020
Type of sample		Water	Water	Water
Date extracted	-	30/01/2020	30/01/2020	30/01/2020
Date analysed	-	31/01/2020	31/01/2020	31/01/2020
TRH C ₁₀ - C ₁₄	µg/L	<50	440	1,300
TRH C ₁₅ - C ₂₈	µg/L	<100	1,000	2,700
TRH C ₂₉ - C ₃₆	µg/L	<100	180	540
TRH >C ₁₀ - C ₁₆	µg/L	<50	600	1,700
TRH >C10 - C16 less Naphthalene (F2)	µg/L	<50	600	1,700
TRH >C ₁₆ - C ₃₄	µg/L	<100	970	2,500
TRH >C ₃₄ - C ₄₀	µg/L	<100	<100	300
Surrogate o-Terphenyl	%	60	#	#

PAHs in Water				
Our Reference		235240-1	235240-2	235240-3
Your Reference	UNITS	MW1	MW2	MW3
Date Sampled		24/01/2020	24/01/2020	24/01/2020
Type of sample		Water	Water	Water
Date extracted	-	30/01/2020	30/01/2020	30/01/2020
Date analysed	-	31/01/2020	31/01/2020	31/01/2020
Naphthalene	µg/L	<1	<1	2
Acenaphthylene	µg/L	<1	<1	<1
Acenaphthene	µg/L	<1	<1	2
Fluorene	µg/L	<1	1	4
Phenanthrene	µg/L	<1	3	9
Anthracene	µg/L	<1	<1	<1
Fluoranthene	µg/L	<1	<1	<1
Pyrene	µg/L	<1	<1	<1
Benzo(a)anthracene	µg/L	<1	<1	<1
Chrysene	µg/L	<1	<1	4
Benzo(b,j+k)fluoranthene	µg/L	<2	<2	<2
Benzo(a)pyrene	µg/L	<1	<1	2
Indeno(1,2,3-c,d)pyrene	µg/L	<1	<1	<1
Dibenzo(a,h)anthracene	µg/L	<1	<1	<1
Benzo(g,h,i)perylene	µg/L	<1	<1	<1
Benzo(a)pyrene TEQ	µg/L	<5	<5	<5
Total +ve PAH's	µg/L	NIL (+)VE	4.7	22
Surrogate p-Terphenyl-d14	%	97	71	77

OCPs in Water - Low Level				
Our Reference		235240-1	235240-2	235240-3
Your Reference	UNITS	MW1	MW2	MW3
Date Sampled		24/01/2020	24/01/2020	24/01/2020
Type of sample		Water	Water	Water
Date extracted	-	30/01/2020	30/01/2020	30/01/2020
Date analysed	-	31/01/2020	31/01/2020	31/01/2020
alpha-BHC	μg/L	<0.01	<0.01	<0.01
НСВ	µg/L	<0.01	<0.01	<0.01
beta-BHC	μg/L	<0.01	<0.01	<0.01
gamma-BHC	µg/L	<0.01	<0.01	<0.01
Heptachlor	μg/L	<0.01	<0.01	<0.01
delta-BHC	µg/L	<0.01	<0.01	<0.01
Aldrin	μg/L	<0.01	<0.01	<0.01
Heptachlor Epoxide	µg/L	<0.01	<0.01	<0.01
gamma-Chlordane	μg/L	<0.01	<0.01	<0.01
alpha-Chlordane	µg/L	<0.01	<0.01	<0.01
Endosulfan I	μg/L	<0.01	<0.01	<0.01
pp-DDE	µg/L	<0.01	<0.01	<0.01
Dieldrin	μg/L	<0.01	<0.01	<0.01
Endrin	µg/L	<0.01	<0.01	<0.01
Endosulfan II	μg/L	<0.01	<0.01	<0.01
pp-DDD	µg/L	<0.01	<0.01	<0.01
Endrin Aldehyde	µg/L	<0.01	<0.01	<0.01
pp-DDT	µg/L	<0.006	<0.006	<0.006
Endosulfan Sulphate	µg/L	<0.01	<0.01	<0.01
Methoxychlor	µg/L	<0.01	<0.01	<0.01
Surrogate TCMX	%	65	65	61

OP Pesticides in water LL				
Our Reference		235240-1	235240-2	235240-3
Your Reference	UNITS	MW1	MW2	MW3
Date Sampled		24/01/2020	24/01/2020	24/01/2020
Type of sample		Water	Water	Water
Date extracted	-	30/01/2020	30/01/2020	30/01/2020
Date analysed	-	31/01/2020	31/01/2020	31/01/2020
Diazinon	µg/L	<0.01	<0.01	<0.01
Dimethoate	µg/L	<0.01	<0.01	<0.01
Chlorpyriphos-methyl	µg/L	<0.01	<0.01	<0.01
Ronnel	µg/L	<0.01	<0.01	<0.01
Chlorpyriphos	µg/L	<0.009	<0.009	<0.009
Fenitrothion	µg/L	<0.01	<0.01	<0.01
Bromophos ethyl	µg/L	<0.01	<0.01	<0.01
Ethion	µg/L	<0.01	<0.01	<0.01
Surrogate TCMX	%	65	65	61

PCBs in Water - Low Level				
Our Reference		235240-1	235240-2	235240-3
Your Reference	UNITS	MW1	MW2	MW3
Date Sampled		24/01/2020	24/01/2020	24/01/2020
Type of sample		Water	Water	Water
Date extracted	-	30/01/2020	30/01/2020	30/01/2020
Date analysed	-	31/01/2020	31/01/2020	31/01/2020
Aroclor 1016	µg/L	<0.1	<0.1	<0.1
Aroclor 1221	µg/L	<0.1	<0.1	<0.1
Aroclor 1232	µg/L	<0.1	<0.1	<0.1
Aroclor 1242	µg/L	<0.1	<0.1	<0.1
Aroclor 1248	µg/L	<0.1	<0.1	<0.1
Aroclor 1254	µg/L	<0.1	<0.1	<0.1
Aroclor 1260	µg/L	<0.1	<0.1	<0.1
Surrogate TCMX	%	65	65	61
Total Phenolics in Water				
-----------------------------	-------	------------	------------	------------
Our Reference		235240-1	235240-2	235240-3
Your Reference	UNITS	MW1	MW2	MW3
Date Sampled		24/01/2020	24/01/2020	24/01/2020
Type of sample		Water	Water	Water
Date extracted	-	29/01/2020	29/01/2020	29/01/2020
Date analysed	-	29/01/2020	29/01/2020	29/01/2020
Total Phenolics (as Phenol)	mg/L	<0.05	<0.05	<0.05

HM in water - dissolved					
Our Reference		235240-1	235240-2	235240-3	235240-4
Your Reference	UNITS	MW1	MW2	MW3	BD1/20200124
Date Sampled		24/01/2020	24/01/2020	24/01/2020	24/01/2020
Type of sample		Water	Water	Water	Water
Date prepared	-	29/01/2020	29/01/2020	29/01/2020	29/01/2020
Date analysed	-	29/01/2020	29/01/2020	29/01/2020	29/01/2020
Arsenic-Dissolved	µg/L	<1	3	4	<1
Cadmium-Dissolved	µg/L	0.2	0.6	<0.1	0.1
Chromium-Dissolved	µg/L	<1	<1	<1	<1
Copper-Dissolved	µg/L	1	2	<1	<1
Lead-Dissolved	µg/L	<1	<1	<1	<1
Mercury-Dissolved	µg/L	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	µg/L	16	29	<1	15
Zinc-Dissolved	µg/L	23	67	3	15

Miscellaneous Inorganics				
Our Reference		235240-1	235240-2	235240-3
Your Reference	UNITS	MW1	MW2	MW3
Date Sampled		24/01/2020	24/01/2020	24/01/2020
Type of sample		Water	Water	Water
Date prepared	-	24/01/2020	24/01/2020	24/01/2020
Date analysed	-	24/01/2020	24/01/2020	24/01/2020
рН	pH Units	7.2	7.6	8.2

Cations in water Dissolved				
Our Reference		235240-1	235240-2	235240-3
Your Reference	UNITS	MW1	MW2	MW3
Date Sampled		24/01/2020	24/01/2020	24/01/2020
Type of sample		Water	Water	Water
Date digested	-	29/01/2020	29/01/2020	29/01/2020
Date analysed	-	29/01/2020	29/01/2020	29/01/2020
Calcium - Dissolved	mg/L	95	83	16
Magnesium - Dissolved	mg/L	880	740	33
Hardness	mgCaCO 3 /L	3,900	3,200	180

Method ID	Methodology Summary
AT-008	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-012/017	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS.
Org-012/017	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-013	Water samples are analysed directly by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

QUALIT	Y CONTROL	: VOCs i	n water			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			28/01/2020	5	28/01/2020	30/01/2020		28/01/2020	
Date analysed	-			30/01/2020	5	30/01/2020	31/01/2020		30/01/2020	
Dichlorodifluoromethane	µg/L	10	Org-013	<10	5	<10	<10	0	[NT]	
Chloromethane	µg/L	10	Org-013	<10	5	<10	<10	0	[NT]	
Vinyl Chloride	µg/L	10	Org-013	<10	5	<10	<10	0	[NT]	
Bromomethane	µg/L	10	Org-013	<10	5	<10	<10	0	[NT]	
Chloroethane	µg/L	10	Org-013	<10	5	<10	<10	0	[NT]	
Trichlorofluoromethane	µg/L	10	Org-013	<10	5	<10	<10	0	[NT]	
1,1-Dichloroethene	µg/L	1	Org-013	<1	5	<1	<1	0	[NT]	
Trans-1,2-dichloroethene	µg/L	1	Org-013	<1	5	<1	<1	0	[NT]	
1,1-dichloroethane	µg/L	1	Org-013	<1	5	<1	<1	0	123	
Cis-1,2-dichloroethene	µg/L	1	Org-013	<1	5	<1	<1	0	[NT]	
Bromochloromethane	µg/L	1	Org-013	<1	5	<1	<1	0	[NT]	
Chloroform	µg/L	1	Org-013	<1	5	2	3	40	123	
2,2-dichloropropane	µg/L	1	Org-013	<1	5	<1	<1	0	[NT]	
1,2-dichloroethane	µg/L	1	Org-013	<1	5	<1	<1	0	121	
1,1,1-trichloroethane	µg/L	1	Org-013	<1	5	<1	<1	0	122	
1,1-dichloropropene	µg/L	1	Org-013	<1	5	<1	<1	0	[NT]	
Cyclohexane	µg/L	1	Org-013	<1	5	<1	<1	0	[NT]	
Carbon tetrachloride	µg/L	1	Org-013	<1	5	<1	<1	0	[NT]	
Benzene	µg/L	1	Org-013	<1	5	<1	1	0	[NT]	
Dibromomethane	µg/L	1	Org-013	<1	5	<1	<1	0	[NT]	
1,2-dichloropropane	µg/L	1	Org-013	<1	5	<1	<1	0	[NT]	
Trichloroethene	µg/L	1	Org-013	<1	5	<1	<1	0	119	
Bromodichloromethane	µg/L	1	Org-013	<1	5	2	4	67	114	
trans-1,3-dichloropropene	µg/L	1	Org-013	<1	5	<1	<1	0	[NT]	
cis-1,3-dichloropropene	µg/L	1	Org-013	<1	5	<1	<1	0	[NT]	
1,1,2-trichloroethane	µg/L	1	Org-013	<1	5	<1	<1	0	[NT]	
Toluene	µg/L	1	Org-013	<1	5	<1	<1	0	[NT]	
1,3-dichloropropane	µg/L	1	Org-013	<1	5	<1	<1	0	[NT]	
Dibromochloromethane	µg/L	1	Org-013	<1	5	1	2	67	107	
1,2-dibromoethane	µg/L	1	Org-013	<1	5	<1	<1	0	[NT]	
Tetrachloroethene	µg/L	1	Org-013	<1	5	<1	<1	0	120	
1,1,1,2-tetrachloroethane	µg/L	1	Org-013	<1	5	<1	<1	0	[NT]	
Chlorobenzene	µg/L	1	Org-013	<1	5	<1	<1	0	[NT]	
Ethylbenzene	µg/L	1	Org-013	<1	5	<1	<1	0	[NT]	
Bromoform	µg/L	1	Org-013	<1	5	<1	<1	0	[NT]	
m+p-xylene	µg/L	2	Org-013	<2	5	<2	<2	0	[NT]	
Styrene	µg/L	1	Org-013	<1	5	<1	<1	0	[NT]	
1,1,2,2-tetrachloroethane	µg/L	1	Org-013	<1	5	<1	<1	0	[NT]	

QUALIT	Y CONTROI	_: VOCs i	n water			Du	uplicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
o-xylene	µg/L	1	Org-013	<1	5	<1	<1	0	[NT]	
1,2,3-trichloropropane	µg/L	1	Org-013	<1	5	<1	<1	0	[NT]	
Isopropylbenzene	µg/L	1	Org-013	<1	5	<1	<1	0	[NT]	
Bromobenzene	µg/L	1	Org-013	<1	5	<1	<1	0	[NT]	
n-propyl benzene	µg/L	1	Org-013	<1	5	<1	<1	0	[NT]	
2-chlorotoluene	µg/L	1	Org-013	<1	5	<1	<1	0	[NT]	
4-chlorotoluene	µg/L	1	Org-013	<1	5	<1	<1	0	[NT]	
1,3,5-trimethyl benzene	µg/L	1	Org-013	<1	5	<1	<1	0	[NT]	
Tert-butyl benzene	µg/L	1	Org-013	<1	5	<1	<1	0	[NT]	
1,2,4-trimethyl benzene	µg/L	1	Org-013	<1	5	<1	<1	0	[NT]	
1,3-dichlorobenzene	µg/L	1	Org-013	<1	5	<1	<1	0	[NT]	
Sec-butyl benzene	µg/L	1	Org-013	<1	5	<1	<1	0	[NT]	
1,4-dichlorobenzene	µg/L	1	Org-013	<1	5	<1	<1	0	[NT]	
4-isopropyl toluene	µg/L	1	Org-013	<1	5	<1	<1	0	[NT]	
1,2-dichlorobenzene	µg/L	1	Org-013	<1	5	<1	<1	0	[NT]	
n-butyl benzene	µg/L	1	Org-013	<1	5	<1	<1	0	[NT]	
1,2-dibromo-3-chloropropane	µg/L	1	Org-013	<1	5	<1	<1	0	[NT]	
1,2,4-trichlorobenzene	µg/L	1	Org-013	<1	5	<1	<1	0	[NT]	
Hexachlorobutadiene	µg/L	1	Org-013	<1	5	<1	<1	0	[NT]	
1,2,3-trichlorobenzene	µg/L	1	Org-013	<1	5	<1	<1	0	[NT]	
Surrogate Dibromofluoromethane	%		Org-013	104	5	107	104	3	101	
Surrogate toluene-d8	%		Org-013	100	5	101	101	0	101	
Surrogate 4-BFB	%		Org-013	112	5	113	112	1	101	

QUALITY CONTI	ROL: vTRH((C6-C10)/E	BTEXN in Water			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			28/01/2020	[NT]		[NT]	[NT]	28/01/2020	
Date analysed	-			30/01/2020	[NT]		[NT]	[NT]	30/01/2020	
TRH C ₆ - C ₉	μg/L	10	Org-016	<10	[NT]		[NT]	[NT]	123	
TRH C ₆ - C ₁₀	μg/L	10	Org-016	<10	[NT]		[NT]	[NT]	123	
Benzene	µg/L	1	Org-016	<1	[NT]		[NT]	[NT]	123	
Toluene	µg/L	1	Org-016	<1	[NT]		[NT]	[NT]	127	
Ethylbenzene	µg/L	1	Org-016	<1	[NT]		[NT]	[NT]	121	
m+p-xylene	µg/L	2	Org-016	<2	[NT]		[NT]	[NT]	121	
o-xylene	µg/L	1	Org-016	<1	[NT]		[NT]	[NT]	119	
Naphthalene	µg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate Dibromofluoromethane	%		Org-016	104	[NT]		[NT]	[NT]	101	
Surrogate toluene-d8	%		Org-016	100	[NT]		[NT]	[NT]	101	
Surrogate 4-BFB	%		Org-016	112	[NT]		[NT]	[NT]	101	

QUALITY CON	ITROL: svTF	RH (C10-0	C40) in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			30/01/2020	[NT]		[NT]	[NT]	30/01/2020	
Date analysed	-			31/01/2020	[NT]		[NT]	[NT]	31/01/2020	
TRH C ₁₀ - C ₁₄	µg/L	50	Org-003	<50	[NT]		[NT]	[NT]	106	
TRH C ₁₅ - C ₂₈	µg/L	100	Org-003	<100	[NT]		[NT]	[NT]	120	
TRH C ₂₉ - C ₃₆	µg/L	100	Org-003	<100	[NT]		[NT]	[NT]	83	
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-003	<50	[NT]		[NT]	[NT]	106	
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-003	<100	[NT]		[NT]	[NT]	120	
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-003	<100	[NT]		[NT]	[NT]	83	
Surrogate o-Terphenyl	%		Org-003	85	[NT]		[NT]	[NT]	85	

QUALIT	Y CONTROL	.: PAHs in	n Water			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			30/01/2020	[NT]		[NT]	[NT]	30/01/2020	
Date analysed	-			31/01/2020	[NT]		[NT]	[NT]	31/01/2020	
Naphthalene	µg/L	1	Org-012/017	<1	[NT]		[NT]	[NT]	89	
Acenaphthylene	µg/L	1	Org-012/017	<1	[NT]		[NT]	[NT]	[NT]	
Acenaphthene	µg/L	1	Org-012/017	<1	[NT]		[NT]	[NT]	[NT]	
Fluorene	µg/L	1	Org-012/017	<1	[NT]		[NT]	[NT]	74	
Phenanthrene	µg/L	1	Org-012/017	<1	[NT]		[NT]	[NT]	79	
Anthracene	µg/L	1	Org-012/017	<1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	µg/L	1	Org-012/017	<1	[NT]		[NT]	[NT]	66	
Pyrene	µg/L	1	Org-012/017	<1	[NT]		[NT]	[NT]	73	
Benzo(a)anthracene	µg/L	1	Org-012/017	<1	[NT]		[NT]	[NT]	[NT]	
Chrysene	µg/L	1	Org-012/017	<1	[NT]		[NT]	[NT]	106	
Benzo(b,j+k)fluoranthene	µg/L	2	Org-012/017	<2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	µg/L	1	Org-012/017	<1	[NT]		[NT]	[NT]	68	
Indeno(1,2,3-c,d)pyrene	μg/L	1	Org-012/017	<1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	µg/L	1	Org-012/017	<1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	µg/L	1	Org-012/017	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-012/017	97	[NT]		[NT]	[NT]	91	

QUALITY C	CONTROL: OCH	Ps in Wate	er - Low Level			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			30/01/2020	[NT]		[NT]	[NT]	30/01/2020	
Date analysed	-			31/01/2020	[NT]		[NT]	[NT]	31/01/2020	
alpha-BHC	µg/L	0.01	Org-012/017	<0.01	[NT]		[NT]	[NT]	112	
НСВ	µg/L	0.01	Org-012/017	<0.01	[NT]		[NT]	[NT]	[NT]	
beta-BHC	µg/L	0.01	Org-012/017	<0.01	[NT]		[NT]	[NT]	108	
gamma-BHC	µg/L	0.01	Org-012/017	<0.01	[NT]		[NT]	[NT]	[NT]	
Heptachlor	µg/L	0.01	Org-012/017	<0.01	[NT]		[NT]	[NT]	108	
delta-BHC	µg/L	0.01	Org-012/017	<0.01	[NT]		[NT]	[NT]	[NT]	
Aldrin	μg/L	0.01	Org-012/017	<0.01	[NT]		[NT]	[NT]	106	
Heptachlor Epoxide	μg/L	0.01	Org-012/017	<0.01	[NT]		[NT]	[NT]	116	
gamma-Chlordane	μg/L	0.01	Org-012/017	<0.01	[NT]		[NT]	[NT]	[NT]	
alpha-Chlordane	μg/L	0.01	Org-012/017	<0.01	[NT]		[NT]	[NT]	[NT]	
Endosulfan I	μg/L	0.01	Org-012/017	<0.01	[NT]		[NT]	[NT]	[NT]	
pp-DDE	μg/L	0.01	Org-012/017	<0.01	[NT]		[NT]	[NT]	98	
Dieldrin	μg/L	0.01	Org-012/017	<0.01	[NT]		[NT]	[NT]	126	
Endrin	μg/L	0.01	Org-012/017	<0.01	[NT]		[NT]	[NT]	106	
Endosulfan II	μg/L	0.01	Org-012/017	<0.01	[NT]		[NT]	[NT]	[NT]	
pp-DDD	μg/L	0.01	Org-012/017	<0.01	[NT]		[NT]	[NT]	106	
Endrin Aldehyde	μg/L	0.01	Org-012/017	<0.01	[NT]		[NT]	[NT]	[NT]	
pp-DDT	μg/L	0.006	AT-008	<0.006	[NT]		[NT]	[NT]	[NT]	
Endosulfan Sulphate	μg/L	0.01	Org-012/017	<0.01	[NT]		[NT]	[NT]	96	
Methoxychlor	µg/L	0.01	Org-012/017	<0.01	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-012/017	80	[NT]		[NT]	[NT]	74	

QUALITY CON	NTROL: OP	Pesticide	s in water LL			Duj	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			30/01/2020	[NT]		[NT]	[NT]	30/01/2020	
Date analysed	-			31/01/2020	[NT]		[NT]	[NT]	31/01/2020	
Diazinon	µg/L	0.01	Org-008	<0.01	[NT]		[NT]	[NT]	[NT]	
Dimethoate	µg/L	0.01	Org-008	<0.01	[NT]		[NT]	[NT]	[NT]	
Chlorpyriphos-methyl	µg/L	0.01	Org-008	<0.01	[NT]		[NT]	[NT]	[NT]	
Ronnel	µg/L	0.01	Org-008	<0.01	[NT]		[NT]	[NT]	104	
Chlorpyriphos	µg/L	0.009	Org-008	<0.009	[NT]		[NT]	[NT]	102	
Fenitrothion	µg/L	0.01	Org-008	<0.01	[NT]		[NT]	[NT]	114	
Bromophos ethyl	µg/L	0.01	Org-008	<0.01	[NT]		[NT]	[NT]	[NT]	
Ethion	µg/L	0.01	Org-008	<0.01	[NT]		[NT]	[NT]	96	
Surrogate TCMX	%		Org-008	80	[NT]		[NT]	[NT]	74	

QUALITY CON	QUALITY CONTROL: PCBs in Water - Low Level								Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			30/01/2020	[NT]		[NT]	[NT]	30/01/2020	
Date analysed	-			31/01/2020	[NT]		[NT]	[NT]	31/01/2020	
Aroclor 1016	µg/L	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1221	µg/L	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1232	µg/L	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1242	µg/L	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1248	µg/L	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1254	µg/L	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	120	
Aroclor 1260	µg/L	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-006	80	[NT]		[NT]	[NT]	74	

QUALITY CO		Du	plicate	Spike Recovery %						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			29/01/2020	[NT]		[NT]	[NT]	29/01/2020	[NT]
Date analysed	-			29/01/2020	[NT]		[NT]	[NT]	29/01/2020	[NT]
Total Phenolics (as Phenol)	mg/L	0.05	Inorg-031	<0.05	[NT]	[NT]	[NT]	[NT]	99	[NT]

QUALITY CC	QUALITY CONTROL: HM in water - dissolved								Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date prepared	-			29/01/2020	[NT]		[NT]	[NT]	29/01/2020	
Date analysed	-			29/01/2020	[NT]		[NT]	[NT]	29/01/2020	
Arsenic-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	96	
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	[NT]		[NT]	[NT]	92	
Chromium-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	97	
Copper-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	99	
Lead-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	101	
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	[NT]		[NT]	[NT]	108	
Nickel-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	95	
Zinc-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	95	

QUALITY COI		Duj	plicate	Spike Recovery %						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			24/01/2020	[NT]		[NT]	[NT]	24/01/2020	
Date analysed	-			24/01/2020	[NT]		[NT]	[NT]	24/01/2020	
рН	pH Units		Inorg-001	[NT]	[NT]	[NT]	[NT]	[NT]	102	[NT]

QUALITY CON		Duj	plicate	Spike Recovery %						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date digested	-			29/01/2020	[NT]		[NT]	[NT]	29/01/2020	
Date analysed	-			29/01/2020	[NT]		[NT]	[NT]	29/01/2020	
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	[NT]		[NT]	[NT]	103	
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	[NT]		[NT]	[NT]	104	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform Eaecal Enterococci. & E Coli levels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

TRH Water(C10-C40) NEPM - Percent recovery for the surrogate is not possible to report due to interference from analytes (other than those being tested) in samples 235240 2, 3.

Douglas Partners Geotechnics / Environment / Groundwater

i

CHAIN OF CUSTODY DESPATCH SHEET

Project No:	86819	.01			Suburb: Kamira Court					To: EnviroLab					
Project Name:	Kamir	a Court DS			Order Number				12 Ashley Street, Chatswood 2067						
Project Manage							JJH		1	Attn:		en Hie			
Emails:			<u>oel.james</u>	-hall@douc	laspartn					Phone: / (02) 9910°6200					
Date Required:		day □	24 hours		ours 🛛	72 hour		Standard		Email:/		@enviro			
Prior Storage:	Z Esk	y 🗆 Fridg	ge 🗆 Sh		Do samp	les contai	n 'potentia	I' HBM?	Yes 🛛	No	(If YES, the	en handle, tr	ansport and	store in accordance with FPM HA	JD)
		pled	Sample Type	Container Type	i	_			Analytes						
Sample ID	Lab ID	Date Sampled	S - soil W - water	G - glass P - plastic	Combo 8L	VOCs	** MH 8	Hd	Hardness					Notes/preservation	
MW1		24/01/20	W	G/P	_ · x	x		x	x					low level OPP/OCP/PCBs	;
MW2	2	24/01/20	W	G/P	х	X		X .	x					low level OPP/OCP/PCBs	;
MW3	. 3	24/01/20	W .	G/P	x	x		x	. x					low level OPP/OCP/PCBs	; .
BD1/20200124-	4	24/01/20	W	G/P		x .	X ().								
R01	5	24/01/20	W	G		x									
			 								Em LAB	irolab Servic 12 Ashley	es St		
									2		Chate	wood NSW 2 (02) 9910 6	67		
										Job N	ల నె 35	240			
	,						1			Date F	eceived: 2	4/01/2	0		
										Time f	Received: i ed by:	52			
· · · · · · · · · · · · · · · · · · ·										Tomp	Con/Ambie	nt		· · · · · · · · · · · · · · · · · · ·	
		· · ·								Coolir	g: ice/icepa ity: intact/Br				
								 		Secur	ty: Intact/Br	bken(None)		· ·	
				ŗ					,						
PQL (S) mg/kg									·			ANZEC	C PQLs	req'd for all water analytes	3 🛛
PQL = practical	-				to Labora	atory Met	hod Dete	ction Limi	t	Lab R	eport/Ref	erence N	o: 27	5240	
Metals to Analys Total number of					nquished	hv: ~~	<u>,</u> 	Transpo	rted to la						
Send Results to		ouglas Part				<u> </u>	<u> </u>				~ .	Phone:	 * *7	Fax:	
Signed:	XX	<u></u>		Received b		$\overline{\zeta}$	5-B.	Hon	ES		Date & T	ime: 2		120 1652	
· · · · · ·		、 、											-1		0040

1.

4

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Joel James-Hall, Jack Snowden

Sample Login Details	
Your reference	86819.01, Kamira Court DSI
Envirolab Reference	235240
Date Sample Received	24/01/2020
Date Instructions Received	24/01/2020
Date Results Expected to be Reported	03/02/2020

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	5 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	13.0
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Sample ID	VOCs in water	vTRH(C6-C10)/BTEXN in Water	svTRH (C10-C40) in Water	PAHsin Water	OCPs in Water - Low Level	OP Pesticides in water LL	PCBs in Water - Low Level	Total Phenolicsin Water	HM in water - dissolved	Hq	Cations in water Dissolved
MW1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	✓	\checkmark
MW2	1	✓	\checkmark	\checkmark	\checkmark	✓	\checkmark	✓	✓	✓	\checkmark
MW3	✓	✓	✓	\checkmark	\checkmark	✓	✓	✓	✓	✓	\checkmark
BD1/20200124	✓								✓		
R01	✓										

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

CERTIFICATE OF ANALYSIS 235240-A

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Joel James-Hall
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	86819.01, Kamira Court DSI
Number of Samples	5 Water
Date samples received	24/01/2020
Date completed instructions received	05/02/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details			
Date results requested by	10/02/2020		
Date of Issue	10/02/2020		
NATA Accreditation Number 2901. This document shall not be reproduced except in full.			
Accredited for compliance with	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *		

<u>Results Approved By</u> Josh Williams, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

sTPH in Water (C10-C40) NEPM Silica gel			
Our Reference		235240-A-2	235240-A-3
Your Reference	UNITS	MW2	MW3
Date Sampled		24/01/2020	24/01/2020
Type of sample		Water	Water
Date extracted	-	10/02/2020	10/02/2020
Date analysed	-	10/02/2020	10/02/2020
TPH C ₁₀ - C ₁₄	μg/L	300	850
TPH C15 - C28	μg/L	750	1,900
TPH C ₂₉ - C ₃₆	μg/L	110	350
TPH >C ₁₀ - C ₁₆	μg/L	420	1,200
TPH >C ₁₆ - C ₃₄	μg/L	660	1,700
TPH >C ₃₄ - C ₄₀	μg/L	<100	190
Surrogate o-Terphenyl	%	71	83

Method ID	Methodology Summary
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.

QUALITY CONTROL:	sTPH in Wat	er (C10-0	C40) NEPM Silica	gel		Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			10/02/2020	[NT]	[NT]		[NT]	10/02/2020	
Date analysed	-			10/02/2020	[NT]	[NT]		[NT]	10/02/2020	
TPH C ₁₀ - C ₁₄	µg/L	50	Org-003	<50	[NT]	[NT]		[NT]	88	
TPH C ₁₅ - C ₂₈	µg/L	100	Org-003	<100	[NT]	[NT]		[NT]	107	
TPH C ₂₉ - C ₃₆	µg/L	100	Org-003	<100	[NT]	[NT]		[NT]	103	
TPH >C ₁₀ - C ₁₆	µg/L	50	Org-003	<50	[NT]	[NT]		[NT]	88	
TPH >C ₁₆ - C ₃₄	µg/L	100	Org-003	<100	[NT]	[NT]		[NT]	107	
TPH >C ₃₄ - C ₄₀	µg/L	100	Org-003	<100	[NT]	[NT]		[NT]	103	
Surrogate o-Terphenyl	%		Org-003	108	[NT]	[NT]		[NT]	101	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Andrew (Fitzy) Fitzsimons

From: Sent: To: Subject: Ken Nguyen Monday, 10 February 2020 10:56 AM Steven Luong; Andrew (Fitzy) Fitzsimons FW: Results for Registration 235240 86819.01, Kamira Court DSI-

Follow up Flagged

Rof: 235240-A TAT: Jday Dre: 10/2/20

Kind Regards,

Follow Up Flag:

Flag Status:

Ken Nguyen | Customer Service / Chemist | Envirolab Services Pty Ltd (Monday to Friday 1pm to 9pm) Great Science. Great Service. 12 Ashley Street Chatswood NSW 2067 T 612 9910 6200 F 612 9910 6201 E knguyen@gnyirolab.com.au | W www.envirolab.com.au

New sampling bottle provision now available for PFAS and SVOCs in water samples

Please note that all samples submitted to the Envirolab Group laboratories will be analysed under the Envirolab Group Terms and Conditions. The Terms and Conditions are accessible by clicking this link

From: Joel James-Hall <joel.james-hall@douglaspartners.com.au> Sent: Wednesday, 5 February 2020 2:01 PM To: Ken Nguyen <KNguyen@envirolab.com.au> Cc: Jack Snowden <Jack.Snowden@douglaspartners.com.au> Subject: RE: Results for Registration 235240 86819.01, Kamira Court DSI

Hi Ken,

Could we please schedule silica gel cleanup (TRH) for the following samples

- MW2 (ELS ref 235240-2)
- MW3 (ELS ref 235240-3)

24h TAT if possible.

In the meantime would it be possible to be provided the TRH chromatographs for these samples?

Cheers

Joel James-Hall | Environmental Engineer Douglas Partners Pty Ltd | ABN 75 053 980 117 | www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 | PO Box 472 West Ryde NSW 1685 P: 02 9809 0666 | E: joel.james-hall@douglaspartners.com.au

CLIENT CHOICE AWARDS 2010 WINNER Destor

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Joel James-Hall

Sample Login Details	
Your reference	86819.01, Kamira Court DSI
Envirolab Reference	235240-A
Date Sample Received	24/01/2020
Date Instructions Received	05/02/2020
Date Results Expected to be Reported	10/02/2020

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	5 Water
Turnaround Time Requested	3 days
Temperature on Receipt (°C)	13.0
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Sample ID	sTPH in Water (C10-C40) NEPM Silica gel	On Hold	
MW1		✓	
MW2	✓		
MW3	✓		
BD1/20200124		✓	
R01		\checkmark	

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.